Supports – Canopy or shroud
Reexamination Certificate
1999-02-12
2002-05-28
King, Anita (Department: 3632)
Supports
Canopy or shroud
C248S241000, C052S800180
Reexamination Certificate
active
06394404
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of object supporting systems, and, more particularly, to adjustable surface-mounted systems used to support objects in a range of positions with respect to a mounted surface.
BACKGROUND
Many surface mounting systems exist for supporting objects in particular positions with respect to surfaces on which such systems are mounted. Surface mounting systems exist which may be mounted on vertical and/or horizontal surfaces (e.g., on walls, floors, or ceilings). A common example of such systems is a wall-mounted shelf unit. Several advancements have been made in the adjustable wall-mounted shelving system art, including the ability of a user to adjust the height of shelves in a surface mounting system mounted on a wall. However, the adjustability of shelves in such systems is typically limited to a number of discreet shelf heights to which a shelf may be moved and secured in place. This adjustability limitation is significant when such systems are used for certain purposes in which fine shelf height adjustment is desired. For example, audio/visual equipment components often vary in height. This creates a problem in prior art shelving systems when a tight monolithic look is desired for a number of components supported on separate shelves. Undesirable space and/or inadequate space between components supported on shelves which are not continuously adjustable results in an aesthetically unappealing shelving system. Additionally, the adjustability limitation of conventional systems fails to maximize the use of space on the system. For example, when shelf adjustability on a surface mounting system is limited, space between shelves is often wasted, resulting in a space-inefficient shelving system.
Another problem in prior art shelving systems exists in the case of cantilevered shelves. Specifically, when a cantilevered shelf is loaded (i.e., an object is placed thereon), the shelf tends to tilt or bow in a downward direction under the load. Tilted shelves are undesirable for obvious reasons, including the increased chance of objects sliding or falling off of the shelves). Also, particularly when the load on a shelf is large enough to make the tilt or bow of the shelf visible, such a cantilevered shelf is aesthetically unappealing.
Conventional shelving systems are often not designed to suitably support a wide variety of object types. For example, conventional shelving systems which are suitable for supporting pieces of art or books are typically not best suited for supporting electronic components which often have numerous wires leading to and from each electronic component. Although the term “wires” is used here, it should be noted that this term includes reference to any connection element extending to or from objects placed upon a shelf (such as wiring, cords, plugs, cable, coaxial cable, etc.). Though some shelving systems offer wire management elements or assemblies to arrange and/or hide wires, conventional wire management elements and assemblies do not permit easy insertion and removal of one or more wires from other wires in the wire management elements or assembly. An undesirable compromise is often reached between making wires easily accessible for removal or insertion into a conventional wire management system (usually resulting in increased wire visibility) and hiding wires (usually resulting in less accessible wires).
Other problems with conventional shelving systems are experienced when electronic equipment is supported on shelves. Many pieces of electronic equipment are sensitive to vibration and electromagnetic interference. Especially where a number of pieces of electronic equipment are supported on the same shelving system (with one or more shelves), it is desirable and sometimes necessary to isolate one piece of electronic equipment from another—both vibrationally and electro-magnetically. Vibration from, for example, a CD player on one self may affect a sensitive phonograph on another shelf. As another example, 110 volt power cords running near audio/visual signal cords often result in hum and other forms of radio frequency and electromotive interference between pieces of electronic equipment. Conventional shelving systems typically do not isolate individual pieces of electronic equipment placed on separate shelves in the same shelving system.
It is often desirable to illuminate objects placed upon conventional shelving systems. Unfortunately, lighting systems designed for use with conventional shelving systems typically do not permit easy adjustment of shelves without removing part or all of the lighting system illuminating the shelves. Shelf adjustment in conventional shelving systems usually requires cumbersome removal or loosening of attached lighting systems, including detaching and/or untangling wires, unscrewing or disconnecting contacts, etc. Also, conventional shelving systems do not integrate lighting sources into structural elements of the shelves (e.g., those elements used to support shelves in position, such as cantilevered members). Integrated lighting provides more light point source control on the shelving system, such as control of upwardly or downwardly-directed light on objects supported on the shelves, more even dispersion of light on various areas of the shelving system, etc.
Therefore, a need exists for a surface mounted system which is easily adjustable along a continuous adjustment range, preferably has one or more shelves which are tilt-adjustable to compensate for varying loads on the shelves, provides for wire management which allows easy access to wires running through the system while hiding such wires, offers vibration isolation of each shelf and a manner in which to avoid vibratory interference between shelves and electromagnetic interference between wires running to and from different pieces of electronic equipment supported on the system, and has a lighting system which requires little to no adjustment when shelves are adjusted on the surface mounting system and which is integral with the surface mounted system. The invention as described herein provides such a surface mounting system.
SUMMARY OF THE INVENTION
The surface mounting system of the present invention preferably includes two assemblies: a surface mounted assembly and one or more support assemblies adjustably mounted to the surface mounted assembly. Objects may be placed upon the one or more support assemblies and moved to desired positions by adjusting the locations of support assemblies on the surface mounted assembly.
The surface mounted assembly is preferably an elongated track mounted vertically upon a wall (although other orientations and surfaces are possible) via endcaps which are bolted to the wall. The elongated track preferably has two T-shaped channels running along the length of the track. Each support assembly preferably includes a U-shaped base in which is mounted a cantilevered support member which extends from one end of the U-shaped base. The opposite ends of the U-shaped base preferably terminate in J-shaped curved edges which fit within the channels in the elongated track. As such, the U-shaped base and the cantilevered support member may slide in the channels along the length of the elongated track. Cantilever force exerted on the cantilevered support member causes the cantilevered support member and the attached U-shaped base to rotate, thereby causing the J-shaped curved edges of the U-shaped base to rotate and bind within the channels. By binding at a particular location on the elongated track, the U-shaped base and the cantilevered support member are prevented from further movement in the direction of the exerted cantilever force. For example, in the case where the elongated track is vertically mounted to a wall, the cantilever force exerted by the weight of the support assembly (and object(s) supported thereon) causes the support assembly to bind in place in any desired location along the elongated track. A shelf for supporting objects is preferably secured on top of the cantilevered support mem
King Anita
Ladas & Parry
Omnimount Systems, Inc.
LandOfFree
Wire management system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wire management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wire management system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2817957