Stable idle procedure

Specialized metallurgical processes – compositions for use therei – Processes – Producing or treating free metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S504000, C075S531000, C075S549000

Reexamination Certificate

active

06387153

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a process for producing molten iron from a metalliferous feed material, such as ores, partly reduced ores, and metal-containing waste streams, in a metallurgical vessel containing a molten bath.
The present invention relates particularly to a molten bath-based direct smelting process for producing molten iron from a metalliferous feed material.
BACKGROUND
The term “direct smelting process” is understood to mean a process that produces a molten metal, in this case iron, from a metalliferous feed material.
The present invention relates more particularly to a molten bath-based direct smelting process that is generally referred to as the HIsmelt process.
In general terms, the HIsmelt process includes thesteps of:
(a) forming a molten bath having a metal layer and a slag layer on the metal layer in a direct melting vessel;
(b) injecting metalliferous feed material and solid carbonaceous material, and optionally fluxes, into the metal layer via a plurality of lances/tuyeres;
(c) smelting metalliferous feed material to metal in the metal layer;
(d) causing molten material to be protected as splashes, droplets, and streams into a space above a nominal quiescent surface of the molten bath to form a transition zone; and
(e) injecting an oxygen-containing gas into the vessel via one or more than one lance/tuyere to post-combust reaction gases released from the molten bath, whereby the ascending and thereafter descending splashes, droplets and streams of molten material in the transition zone facilitate heat transfer to the molten bath, and whereby the transition zone minimises heat loss from the vessel via the aide walls in contact with the transition zone.
A preferred form of the HIsmelt process is characterized by foxing the transition zone by injecting carrier gas, metalliferous feed material, solid carbonaceous material, and optionally fluxes into the bath through lances that extend downwardly and inwardly through side walls of the vessel so that the carrier gas and the solid material penetrate the metal layer and cause molten material to be projected from the bath.
This form of the HIsmelt process is an improvement over earlier forms of the process which form the transition zone by bottom injection of carrier gas and solid carbonaceous material through tuyeres into th bath which causes droplets and splashes and streams of molten material to be projected from the bath.
The applicant has carried out extensive pilot plant work on operating the HIsmelt process with continuous discharge of molten iron and periodic tapping of molten slag from the direct smelting vessel and has made a series of significant findings in relation to the process.
One of the findings, which is the subject of a first aspect of the present invention, is that in situations where there is a continuing supply of oxygen-containing gas and solid carbonaceous material it is possible to hold the process indefinitely, ie stop producing metal, and maintain a pool of molten metal in the vessel, and then continue operating the process and resume metal production.
This is an important finding because there are a number of situations in which it is important to be able to stop production of molten iron for relatively short periods of time. One example of such a situation is when downstream operations can not take molten iron produced by the process. In this situation, whilst the process can continue to operate and produce molten iron, there is a cost penalty associated with not being able to use the molten iron immediately in the downstream processing operations. Another example is where there is an unforseen interruption to the supply of metalliferous feed material to the process and it is not possible to continue operating the process. In such situations, without a hold procedure, the only option is to immediately shut-down the process and empty molten iron and slag from the vessel and then restart the process when the cause of the shutdown has been rectified. A process shutdown/start-up is a major exercise with considerable lost production and cost.
Another of the findings in the pilot plant work, which is the subject of a second aspect of the present invention, is that in situations where there has been an interruption to the supply of solid carbonaceous material but there is an available supply of gaseous or liquid combustible material, such as natural gas, it is possible to hold the process for a considerable period of time, ie stop producing metal, and maintain a pool of molten metal in the vessel, and then continue operating the process and resume metal production.
This is an important finding because, in such a situation, without a hold procedure, the only option is to immediately shut-down the process and empty molten iron and slag from the vessel and then restart the process when the cause of the shutdown has been rectified. A process shutdown/start-up is a major exercise with considerable lost production and cost.
The above findings are applicable particularly to direct smelting processes which discharge molten metal continuously and tap molten slag periodically.
SUMMARY OF THE INVENTION
The first aspect of the present invention provides a direct smelting process for producing molten metal from a metalliferous feed material in a vessel that contains a molten bath having a metal layer and a slag layer on the metal layer, which process includes the following standard operating procedure of:
(a) injecting carrier gas, metalliferous feed material, and solid carbonaceous material, and optionally fluxes, into the molten bath via a plurality of solid material injection lances/tuyeres positioned above and extending towards the surface of the metal layer and causing molten material to be projected from the molten bath as splashes, droplets and streams into a space above a nominal quiescent surface of the molten bath to form a transition zone;
(b) smelting metalliferous feed material to metal in the molten bath;
(c) injecting oxygen-containing gas into the vessel via one or more than one lance/tuyere and post-combusting reaction gases released from the molten bath, whereby the ascending and thereafter descending splashes, droplets and streams of molten material in the transition zone facilitate heat transfer to the molten bath;
(d) tapping molten metal and molten slag as required from the vessel;
and which process is characterised by the following hold procedure for situations in which it is necessary to stop production of molten metal for a period of time other than situations in which there has been an interruption to the supply of oxygen-containing gas and/or solid carbonaceous material to the process:
(i) stopping supply of metalliferous feed material into the vessel;
(ii) continuing to inject carrier gas and solid carbonaceous material into the molten bath via the solid material injection lances/tuyeres and generating combustible material in the molten bath and causing molten material and combustible material to be projected into the transition zone; and
(iii) continuing to inject oxygen-containing gas into the vessel via one or more than one lance/tuyere and combusting combustible material projected into the transition zone, whereby the ascending and thereafter descending splashes, droplets and streams of molten material in the transition zone facilitate heat transfer to the molten bath to maintain the temperature of the molten bath above a temperature at which the bath freezes.
Preferably the amount of solid carbonaceous material and oxygen containing gas that is injected into the vessel is reduced during the hold procedure.
Preferably the hold procedure includes periodically adding fluxes to the molten bath.
Preferably the hold procedure includes periodically tapping of molten slag during the hold period.
The second aspect of the present invention provides a process for producing molten metal from a metalliferous feed material in a vessel that contains a molten bath having a metal layer and a slag layer on the metal layer, which process includes the following

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stable idle procedure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stable idle procedure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stable idle procedure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2817949

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.