Structured silicon anode

Active solid-state devices (e.g. – transistors – solid-state diode – Bulk effect device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S002000, C257S003000, C257S004000, C257S005000, C320S107000, C324S252000, C977S948000, C977S932000, C977S810000, C977S701000

Reexamination Certificate

active

07402829

ABSTRACT:
A silicon/lithium battery can be fabricated from a silicon substrate. This allows the battery to be produced as an integrated unit on a chip. The battery includes a silicon anode formed from sub-micron diameter pillars of silicon fabricated on an n-type silicon wafer. The battery also includes a cathode including lithium.

REFERENCES:
patent: 5262021 (1993-11-01), Lehmann et al.
patent: 5907899 (1999-06-01), Dahn et al.
patent: 6022640 (2000-02-01), Takada et al.
patent: 6042969 (2000-03-01), Yamada et al.
patent: 6334939 (2002-01-01), Zhou et al.
patent: 6337156 (2002-01-01), Narang et al.
patent: 6353317 (2002-03-01), Green et al.
patent: 2004/0072067 (2004-04-01), Minami et al.
patent: 0 820 110 (1998-01-01), None
patent: 1 011 160 (2000-06-01), None
patent: 1 258 937 (2002-11-01), None
patent: 1 335 438 (2003-08-01), None
patent: 10-83817 (1998-03-01), None
patent: 10-199524 (1998-07-01), None
patent: 2001-291514 (2001-10-01), None
patent: 2002-313319 (2002-10-01), None
patent: 2004-296386 (2004-10-01), None
patent: 1015956 (2002-02-01), None
patent: WO 99/33129 (1999-07-01), None
patent: WO 01/13414 (2001-02-01), None
patent: WO 2004/042851 (2004-05-01), None
S. Tsuchiya et al., (“Structural Fabrication Using Cesium Chloride Island Arrays as a Resist in a Fluorocarbon Reactive Ion Etching Plasma”, Electrochemical Solid-State Letters, vol. 3, issue 1, pp. 44-46, 2000; publicly available electronically Nov. 5, 1999).
R. A. Sharma et al., “Thermodynamic Properties of the Lithium-Silicon System”, J. Electrochem. Soc., 123, pp. 1763-1768 (1976).
B.A. Boukamp et al., “All-Solid Lithium Electrodes with Mixed-Conductor Matrix”, J. Electrochem. Soc., 128, pp. 725-729 (1981).
R. A. Huggins, “Lithium Alloy Anodes” in Handbook of Battery Materials, J.O. Besenhard Ed., Wiley-VCH, Weinheim, pp. 359-381 (1999).
S. Bourderau, et al., “Amorphous Silicon as a Possible Anode Material for Li-ion Batteries”, J. Power Sources, pp. 233-290, 81 (1999).
Hong Li et al., “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”, Electrochem. Solid-State Lett., 2, pp. 547-549 (1999).
J.O. Besenhard et al., “Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-ion Batteries?”, J. Power Source, 68, pp. 87-90 (1997).
L.Y. Beaulieu et al., “Reaction of Li with Grain-Boundary Atoms in Nanostructured Compounds”, J. Electrochem. Soc., 147, pp. 3206-3212 (2000).
J. K. Niparko (Editor), “Cochlear Implants Technology”, Pub., Lippincott Williams and Wilkins, Philadelphia, pp. 109-121 (2000).
C.J. Wen et al., “Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System”, J. Solid State Chem., 37, pp. 271-278 (1981).
W.J. Weydanz et al., “A Room Temperature Study of the Binary Lithium-Silicon and the Ternary Lithium-Chromium-Silicon System for use in Rechargeable Lithium Batteries”, J. Power Sources, 81-82, pp. 237-242 (1999).
J-P. Colinge, “Silicon-on-Insulator Technology: Materials to VLSI”, Kluwer Acad. Pub, Boston, Chapter 2, p. 38 (1991).
Mino Green, “Quantum Pillar Structures onn+Gallium Arsenide Fabricated Using ‘Natural’ Lithography”, Appl. Phys. Lett., 63, pp. 264-266 (1993).
Mino Green et al., “Mesoscopic Hemisphere Arrays for Use as Resist in Solid State Structure Fabrication”, J. Vac. Sci. & Tech. B, 17, pp. 2074-2083 (1999).
Shin Tsuchiya et al., “Structural Fabrication Using Cesium Chloride Island Arrays as a Resist in a Fluorocarbon Reactive Ion Etching Plasma”, Electrochem. Solid-State Lett., 3, pp. 44-46 (2000).
L-C. Chen et al., “Selective Etching of Silicon in Aqueous Ammonia Solution”, Sensors and Actuators, A49, pp. 115-121 (1995).
H. Li et al., “The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature”, Solid State Ionics, 135, pp. 181-191 (2000).
“Properties of Silicon”, Pub. INSPEC, The Institution of Electrical Engineers, London (1988): p. 461 for solubility; p. 455 for diffusion data.
B.E. Deal et al., “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., 36, pp. 3770-3778.
L.Y. Beaulieu et al., “Colossal Reversible Volume Changes in Lithium Alloys”, Electrochem. Solid State Lett., 4, pp. A137-A140 (2001).
Ohara et al, “A thin film silicon . . . ”, J. Power Sources 136 (2004), pp. 303-306.
J.P. Maranchi et al, Interfacial properties of the . . . , J. Electrochem. Soc. 153(6) A1246, 2006.
M. Green et al, “Structured Silicon Anodes for . . . ”, Electrochem and solid-state Letters 6, A75-79, 2003.
W.-R. Liu et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive Journal of Power Sources 140 (2005) 139-144.
Y. Liu et al. A novel method of fabricating porous silicon material: ultrasonically enhanced anodic electrochemical etching. Solid State Communications 127 (2003) 583-588.
W. Lang. Silicon Micromachining Technology. Materials Science and Engineering R17 (1996) 1-55.
T. Qiu et al, From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly, Journal of Crystal Growth 277 (2005) 143-148.
K. W. Kolasinski, Silicon nanostructures from electroless electrochemical etching, Current Opinion in Solid Sate and Materials Science 9 (2005) 73-83.
X. Badel et al. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon. Superlattices and Microstructures 36 (2004) 245-253.
P. Kleimann et al. Formation of wide and deep pores in silicon by electrochemical etching. Materials Science and Engineering B69-70 (2000) 29-33.
H.-C. Shin et al. Porous silicon negative electrodes for rechargeable lithium batteries, Journal of Power Sources 139 (2005) 314-320.
K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato. Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions. Proceedings of the 1998 International Symposium on Micromechantronics and Human Science, 1998. MHS '98. Nov. 25-28, 1998 pp. 65-70.
S-H Kim, S-H Lee, H-T Lim, Y-K Kim, S-K Lee. (110) silicon etching for high aspect ratio comb structures 1997 6th International Conference on Emerging Technologies and Factory Automation Proceedings, 1999. ETFA '97., Sep. 9-12, 1997 pp. 248-252.
T. Nakahata, H. Nakajima, “Fabrication of lotus-type porous silicon by unidirectional solidification in hydrogen”, Materials Science and Engineering A 384 (2004) 373-376.
Jyh-Woei Lu et al., “A study of the mechanisms of eroision in silicon single crystals using Hertzian fracture tests”, Wear 186-187 (1995) 105-116.
J. B. Chang et al, “Ultrafast growth of single-crystalline Si nanowires”, Materials Letters 60 (2006) 2125-2128.
R. Wagner, W. Ellis. “Vapor-liquid solid mechanism of single crystal growth”, Applied Physics Letters vol. 4, No. 5 Mar. 1964, 89-90.
X. Q. Yan et al., “H2-assisted control growth . . . ”, / Journal of Crystal Growth 257 (2003) 69-74.
Y. Zhang et al., “Synthesis of thin Si whiskers . . . ”, Journal of Crystal Growth 186 226 (2001) 185-191.
Y. F. Zhang et al. Bulk-quantity Si nanowires synthesized by SiO sublimation. Journal of Crystal Growth 212 (2000) 115-118.
Z. Jianfeng, Large-scale array of highly oriented silicon-rich micro
anowires induced by gas flow steering, Solid State Communications 133 (2005) 271-275.
L. Z. Pei et al, Silicon nanowires grown from silicon monoxide under hydrothermal conditions, Journal of Crystal Growth 289 (2006) 423-427.
H.F. Yan et al., “Growth of amorphous silicon . . . ”, Chemical Physics Letters 323 (2000) 224-228.
Y.Y. Wong et al., “Controlled growth of silicon . . . ”, Science and Technology of Advanced Materials 6 (2005) 330-4.
Z.Y. Zhang et al. Catalytic growth of a-FeSi2 and silicon nanowires. Journal of Crystal Growth 289 288 (2005)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Structured silicon anode does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Structured silicon anode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structured silicon anode will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2789886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.