Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...
Patent
1995-04-07
1998-09-01
Burn, Brian M.
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Nitrogen containing other than solely as a nitrogen in an...
514631, 514635, A61K 31155
Patent
active
058012001
ABSTRACT:
The in vivo oxidation of lipids and lipid-containing molecules has been discovered to be initiated by the concurrent reaction of such lipid materials with reducing sugars such as glucose, advanced glycosylation endproducts such as AGE-peptides, or a compound which forms advanced glycosylation endproducts, to form materials or particles known as AGE-lipids. AGE-lipids have been implicated in the aging process, the abnormal formation of lipofuscin and in various disease states such as diabetes and atherosclerosis. Diagnostic methods are contemplated, extending in utility from the detection of the onset and course of conditions in which variations in lipid oxidation, AGE-lipid levels, LDL levels, apolipoprotein levels, apolipoprotein receptor binding the like, may be measured, to drug discovery assays. Corresponding methods of treatment and pharmaceutical compositions are disclosed that are based on an active ingredient or ingredients that demonstrates the ability to modulate the levels of all of the foregoing markers of lipid oxidation. A further aspect of the invention relates to the treatment of stroke and related maladies, especially to the inhibition of infarct size of stroke, and to agents and compositions that are prepared for such purposes.
REFERENCES:
patent: 3681504 (1972-08-01), Johnston
patent: 4497830 (1985-02-01), Skuballa et al.
patent: 4554271 (1985-11-01), Braughler et al.
patent: 4778752 (1988-10-01), Curtiss et al.
patent: 4900747 (1990-02-01), Vlassara et al.
patent: 4983604 (1991-01-01), Ulrich et al.
patent: 5100919 (1992-03-01), Urich et al.
patent: 5106877 (1992-04-01), Ulrich et al.
patent: 5238963 (1993-08-01), Cerami et al.
patent: 5246970 (1993-09-01), Williamson et al.
patent: 5246971 (1993-09-01), Williamson et al.
patent: 5273875 (1993-12-01), Griffith
patent: 5358969 (1994-10-01), Williamson et al.
patent: 5430039 (1995-07-01), Roberts-Lewis et al.
patent: 5559154 (1996-09-01), Weber et al.
Vlassara et al., "Function of Macrophage Receptor for Vonenzymatically Glycosylated Proteins is Modulated By Insulin Levels", Diabetes, 35(1), p. 11a (1986).
Vlassara et al., "Accumulation Of Diabetic Rat Peripheral Nerve Myelin By Macrophages Increases With The Presence Of Advanced Glycosylation Endproducts", J. Exp. Med., pp. 197-207 (1984).
Vlassara et al., "Recognition And Uptake Of Human Diabetic Peripheral Nerve Myelin By Macrophages", Diabetes, 34 No. 6, pp. 553-557 (1985).
Vlassara et al., "High-Affinity-Receptor-Mediated Uptake And Degradation Of Glucose-Modified Proteins: A Potential Mechanism For The Removal Of Senescent Macromoleules", Proc. Natl. Acad. Sci. U.S.A., 82, pp. 5588-5592 (1985).
Vlassara et al., "Novel Macrophage Receptor for Glucose-Modified Proteins Is Distinct From Previously Described Scavenger Receptors", J. Exp. Med., 164, pp. 1301-1309 (1986).
Cerami, A. et al., "Role of Nonenzymatic Glycosylation in Atherogenesis", Journal of Cellular Biochemistry, 30, pp. 111-120 (1986).
Radoff, S. et al., "Characterization Of A Solubilized Cell Surface Binding Protein On Macrophages Specific For Proteins Modified Nonenzymatically by Advanced Glycosylation End Products", Arch. Biochem. Biophys., 263 No. 2, pp. 418-423 (1988).
Radoff, S. et al., "Isolation of a Surface Binding Protein Specific For Advanced Glycosylation End Products From The Mouse Macrophage-Derived Cell Line Raw 264.7", Diabetes, 39, pp. 1510-1518 (1990).
Yang, Z. et al., "Two Novel Rat Liver Membrane Proteins That Bind Advanced Glycosylation Endproducts: Relationship to Macrophage Receptor For Glucose-Modified Proteins", J. Exp. Med., 174, pp. 515-524 (1991).
Witztum, J.L., and D. Steinberg, "Role of oxidized low density lipoprotein in atherogenesis", J. Clin. Invest. 88, pp. 1785-1792 (1991).
Goldstein, J.L., Y.K. Ho, S.K. Basu, and M.S. Brown, "Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition", Proc. Natl. Acad. Sci. USA, 76, pp. 333-357 (1979).
Fogelman, A.M. J.S. Schecter, M. Hokom, J.S. Child, and P.A. Edwards, "Malodialdehyde alteration of low density lipoprotein leads to cholesterol accumulation in human monocyte-macrophages", Proc. Natl. Acad. Sci. USA, 77, pp. 2214-2218 (1980).
Sparrow, C.P., S. Parthasarathy, and D. Steinberg, "A macrophage receptor tht recognizes oxidized LDL but not acetylated LDL", J. Biol. Chem., 264, pp. 2599-2604 (1989).
Ross, R. "The pathogenesis of atherosclerosis", An update. New Eng. J. Med., 314, pp. 488-500 (1986).
Quinn, M.T., S. Pathasarathy, L.G. Fong, and D. Steinberg, "Oxidatively modified low density lipoprotein: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis", Proc. Natl. Sci. USA, 84, pp. 2095-2998 (1987).
Hessler, J.R., D.W. Morel, L.J. Lewis, and G.M. Chisolm, "Lipoprotein oxidation and lipoprotein-induced cytotoxicity", Arteriosclerosis, 3, pp. 215-222 (1983).
Kugiyama, K., S.A. Kerns, J.D. Morrisett, R. Roberts, and P.D. Henry, "Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins", Nature, 344, pp. 160-162 (1990).
Rajavashiesth, T.B., A. Andalibi, M.C. Territo, J. A. Berliner, M. Navab, A.M. Fogelman, and A.J. Lusis, Induction of endthelial cell expression of granulocyte and macrophage colony-stiumulating factors by modified low-density lipoproteins. Nature, 344, pp. 254-257 (1990).
Cushing, S.D., J.A. Berliner, A.J. Valente, M. Navab, F. Parhami, R. Gerrity, C.J. Schwartz, and A.M. Fogelman, "Minimally modified low denisty lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells", Proc. Natl. Acad. Sci. USA, 87, pp. 5134-5138 (1990).
Kits, T., Y. Nagano, M. Yokode, K. Ishii, N. Kume, A. Ooshima, H. Yoshida, and C. Kawai, "Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal mode for familial; hypercholesterolemia", Proc. Natl. Acad. Sci. USA, 84, pp. 5928-5931 (1987).
Esterbauer, H.G. Jurgens, O. Quehenberger, and Koller, E. "Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes", J. Lipid Res., 28, pp. 505-509 (1987).
Quehenberger, O., E. Koller, G. Jurgens, and H. Esterbauer, "Investigation of lipid peroxidation in human low density lipoprotein", Free Radical Res. Commun. 3, pp. 233-242 (1987).
Steinbrecher, U.P. "Oxidation of human low density lipoprotein results in derivitization of lysine residues of apolipoprotein B by lipid peroxide decomposition products", J. Biol. Chem., 262, pp. 3603-3608 (1987).
Steinbrecher, U.P., S. Parthasarathy, D.S. Leake, J.L. Witztum, and D. Steinberg, "Modification of low density lipoprotein by endothellal cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids", Proc. Natl. Acad. Sci. USA, 81, pp. 3883-3887 (1984).
Parthasarathy, S., E. Wieland, and D. Steinberg, "A role for endothelial cell lipoxygenase in the oxidative modifications of low density lipoprotein", Proc. Natl. Acad. Sci. USA, 86, pp. 1046-1050 (1989).
Klaassen, C.D. Heavy metals and heavy metal antagonists, in Goodman and Gilman's The Pharmacological Basis of Therapeutics. A.G. Gilman, L.S. Goodman. T.W. Rall, and F. Murad. Macmillan, New York, pp. 1592-1614 (1985).
Frei, B., Y. Yamamoto, D.Niclas, and B.N. Ames. "Evaluation of an isolumino chemiluminescence assay for the detection of hydroperoxides in human blood plasma", Anal. Biochem., 175, pp. 120-130 (1988).
Frei, B., R. Stocker, and B.N. Ames, "Antioxidant defenses and lipid peroxidation in human blood plasma", Proc. Natl. Acad. Sci. USA, 85, pp. 9748-9752 (1988).
Bucala, R., and A. Cerami, "Advanced glycosylation: chemistry, biology, and implications for diabetes and aging", Adv. Pharmacol. 23, pp. 1-34 (1992).
Njoroge, F.G., and V.M. Monnier, "The chemistry of the Haillard reaction under physiological conditions: A review", Prog. Clin. Biol. Res., 304, pp. 85-107 (1989).
Brownlee, H., A. Cerami, and H. Vlassara, "Advanced glycosylation endproducts in tissue and the bioche
Bucala Richard J.
Cerami Anthony
Tracey Kevin J.
Vlassara Helen
Burn Brian M.
The Picower Institute for Medical Research
LandOfFree
Methods and materials for the diagnosis and treatment of conditi does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and materials for the diagnosis and treatment of conditi, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and materials for the diagnosis and treatment of conditi will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-270714