siRNA targeting TNFα

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S024310, C536S024100, C514S04400A, C435S325000, C435S375000

Reexamination Certificate

active

07977471

ABSTRACT:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to TNFα.

REFERENCES:
patent: 6001992 (1999-12-01), Ackerman
patent: 6046319 (2000-04-01), Power et al.
patent: 6111086 (2000-08-01), Scaringe
patent: 6172216 (2001-01-01), Bennett et al.
patent: 6291642 (2001-09-01), Weinstein
patent: 6506559 (2003-01-01), Fire et al.
patent: 6965025 (2005-11-01), Gaarde et al.
patent: 6994979 (2006-02-01), Reed
patent: 7022831 (2006-04-01), Reed
patent: 7022837 (2006-04-01), Harding
patent: 7157570 (2007-01-01), Yun
patent: 2002/0081578 (2002-06-01), Plowman et al.
patent: 2002/0086321 (2002-07-01), Craig
patent: 2002/0086356 (2002-07-01), Tuschl et al.
patent: 2002/0150945 (2002-10-01), Finney
patent: 2003/0087259 (2003-05-01), Clancy et al.
patent: 2003/0105051 (2003-06-01), McSwiggen
patent: 2003/0143732 (2003-07-01), Fosnaugh
patent: 2003/0157030 (2003-08-01), Davis et al.
patent: 2003/0228597 (2003-12-01), Cowsert
patent: 2004/0029275 (2004-02-01), Brown et al.
patent: 2004/0054155 (2004-03-01), Woolf
patent: 2004/0063654 (2004-04-01), Davis et al.
patent: 2004/0101857 (2004-05-01), Ward
patent: 2004/0180357 (2004-09-01), Reich
patent: 2004/0192629 (2004-09-01), Xu et al.
patent: 2004/0204380 (2004-10-01), Ackermann
patent: 2004/0219671 (2004-11-01), McSwiggen
patent: 2004/0248296 (2004-12-01), Beresford
patent: 2004/0248299 (2004-12-01), Jayasena
patent: 2004/0259247 (2004-12-01), Tuschl et al.
patent: 2005/0048529 (2005-03-01), McSwiggen
patent: 2005/0107328 (2005-05-01), Wyatt
patent: 2005/0130181 (2005-06-01), McSwiggen
patent: 2005/0176025 (2005-08-01), McSwiggen
patent: 2005/0181382 (2005-08-01), Zamore
patent: 2005/0186586 (2005-08-01), Zamore
patent: 2005/0227935 (2005-10-01), McSwiggen
patent: 2005/0239731 (2005-10-01), McSwiggen
patent: 2005/0245475 (2005-11-01), Khvorova
patent: 2006/0286575 (2006-12-01), Farrell
patent: 2007/0031844 (2007-02-01), Khvorova
patent: 2007/0254850 (2007-11-01), Lieberman
patent: WO9800532 (1998-01-01), None
patent: WO0020645 (2000-04-01), None
patent: WO0021559 (2000-12-01), None
patent: WO0076497 (2000-12-01), None
patent: WO0244321 (2002-06-01), None
patent: WO03035869 (2003-05-01), None
patent: WO03035870 (2003-05-01), None
patent: WO03070897 (2003-08-01), None
patent: WO03070969 (2003-08-01), None
patent: WO03646625 (2003-08-01), None
patent: WO03072704 (2003-09-01), None
patent: WO2004031237 (2004-04-01), None
patent: WO2004046324 (2004-06-01), None
patent: WO2004048511 (2004-06-01), None
patent: WO2004090105 (2004-10-01), None
patent: WO2005001043 (2005-01-01), None
patent: WO2005078095 (2005-08-01), None
patent: WO2005089224 (2005-09-01), None
patent: WO2005117991 (2005-12-01), None
patent: WO2006015389 (2006-02-01), None
patent: WO2006110813 (2006-10-01), None
Kumar, High-Throughput Selection of Effective RNAi Probes for Gene Silencing (2003).
Laitala et al., Inhibition of Bone Resorption in Vitro by Antisense RNA and DNA Molecules Targeted against Carbonic Anhydrase II or Two Subuntis of Vacuolar H + ATPase, Journal of Clinical Investigation 1994, vol. 93, pp. 2311-2318.
Lapidot-Lifson, et al. (1992) Cloning and Antisense Oligodeoxynucleotide Inhibition of a Human Homolog of cdc2 required in Hematopoiesis, Proc. Natl. Acad. Sci. vol. 89, pp. 579-583.
Levenkova, Gene specific siRNA selector, Bioinofrmatics vol. 20, pp. 430-432 (2004).
Lindgren, et al. (2002) Contribution of Known and Unknown Susceptibility Genes to Early-Onset Diabetes in Scandinavia, Diabetes vol. 51, 1609-1617.
Lu, et al., The Human AQP4 gene: Definition of the locus encoding two water channel polypeptides in brain, Proc. Natl Acad. Sci vol. 93, pp. 10908-10912 (Oct. 1996).
Marathi, RAD1, a Human Structural Homolog of theSchizosaccharomyces pombeRAD1 Cell Cycle Checkpoint Gene, Genomcs 54, 344-347 (1998).
Miller, V M et al., “Allele-specific silencing of dominant disease genes” Proceedings of the National Acadamy of Sciences of USA, vol. 100, No. 12, Jun. 10, 2003, pp. 7195-7200 , XP002276730.
Miyagashi et al. (2003) Comparison of the Suppressive Effects of Antisense Oligonucleotides and siRNAs Directed Against the Same Targets in Mammalian Cells. Antisense and Nucleic Acid Drug Development 13:1-7.
Murphy, et al. (2000) Synucleins are Developmentally Expressed, and Alpha-Synuclein Regulates the Size of the Presynaptic Vesicular Pool in Primary Hippocampal Neurons. The Journal of Neuroscience, vol. 20(9):3214-20.
Naito, siDirect: highly effective, target specific siRNA design software for mammalian RNA interference, Nucleic Acids Research vol. 32, W124-129 (2004).
NCBI Nucleotide Result for NM-002609, http://www.ncbi.nlm.nih.gov/sites/entrez, accessed on Jul. 14, 2008.
Zhang, Physical and Functional Interationc between Myeloid Cell Leukemia 1 Protein (MCL1) ad Fortilin, J. Biol. Chem. 37430-37438 (2002).
NCBI Sequence Viewer v2.0 for NM-004438, http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=45439363, accessed on Jul. 3, 2008.
Olie et al, A Novel Antisense Oligonucleotide Targeting Survivin Expression Induces Apoptosis and Sensitizes Lung Cancer Cells to Chemotherapy, Cancer Research 2000, vol. 60: pp. 2805-2809.
Oishi, et al., Identification and Characterization of PKN Beta, a Novel Isoform of Protein Kinase PKN: Expression and Arachiodonic Acid Dependency Are Different from those of PKN alpha, 1999 Biochemical and Biophysical Research Communcation, 261, pp. 808-814.
Pan, et al. (2005) Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation, The EMBO Journal, 24, 2104-2113.
Promega siRNA Target Designer-Version 1.1, http:///www.promega.com/siRNADesigner/program/default.asp. (2003).
Promega siRNA Target Designer-Version 1.51, http:///www.promega.com/siRNADesigner/program/default.asp. Accessed Jun. 24, 2008.
Rabert et al. (1998) A Tetrodextrin-Resistant Voltage-gated Sodium Channel from Human Dorsal Root Ganglia, hPN3/SCN10A. Pain, 78, pp. 107-114.
Reynolds, Rational siRNA design for RNA interference, Nature Biotechnology vol. 22, No. 3, pp. 326-330 (2004) .
Ross, et al. (2001) Inhibition of Kirsten-ras Expression in Human Colorectal Cancer Using Rationally Selected Kirsten-ras Antisense Oligonucleotides, Molecular Cancer Therapeutics vol. 1, 29-41.
Semizarov, Specificity of short interfereing RNA determined through gene expression signatures, Proceedings of the National Acadamy of Sciences USA vol. 100, pp. 6347-6352 (2003).
Shi et al. (2001) Gremlin negatively Modulates BMP-4 Induction of Embryonic Mouse Lung Branching Morphogenesis. Am J Physiol Lung Cell Mol Physiol, 280, pp. L1030-L1039.
siDesign Center for “gene name: src,” http://www.dharmacon.com/DesignCenter/DesignCenterPage.aspx, accessed on May 13, 2008.
siRNA Converter, http://web.archive.org/web/20020101-20021231re—/http://www.ambion.com/techlib/misc/siRNA—finder.html. Accessed Mar. 6, 2008. (siRNA Target Finder).
siRNA Design for RNA Interference (RNAi) Experiments, http://web.archive.org/web/20010101000000-20021231235959/http://www.ambion.com/techlib/misc/siRNA—design.html. Accessed on Mar. 6, 2008.
Sorensen, et al. (2003) Gene Silencing by Systemic Delivery of Synthetic siRNAs in Adult Mice, J. Mol. Biol. 327, 761-766.
Tan et al. (2006) Functional Cooperation Between FACT and MCM Helicase Facilitates Initiation of Chromatin DNA Replication. The EMBO Journal, vol. 25, pp. 3975-3985.
Truss, HuSide—the Human siRNA database: an open access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells, Nucleic Acids Research vol. 33, pp. D108-D111 (2005).
Tsuji, et al. (2006) Essential Role of Phosphoorylation of MCM2 by Cdc7/Dbf4 in the Initiation of DNA Replication in Mammalian Cells. Molecular Biology of the Cell, vol. 17,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

siRNA targeting TNFα does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with siRNA targeting TNFα, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and siRNA targeting TNFα will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2675593

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.