Simultaneous amplification and detection of ribonucleic acid...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07998672

ABSTRACT:
Methods of performing PCR are provided. Methods may include using an optical source to provide heating for thermocyling the PCR reaction. Methods may include using surface plasmon resonance and/or fluorescence resonance enhanced transfer to allow real-time monitoring of a PCR reaction. Methods may include immobilizing a template, primer, or polymerase on a surface such as a gold or other surface plasmon resonance active surface.

REFERENCES:
patent: 5972667 (1999-10-01), Conia et al.
patent: 2004/0086889 (2004-05-01), Hwang et al.
patent: 2006/0223053 (2006-10-01), Roper
patent: WO 00/55307 (2000-09-01), None
patent: WO 02/29027 (2002-04-01), None
patent: WO 02/095070 (2002-11-01), None
patent: WO 03/038127 (2003-05-01), None
Yao et al., “Surface Plasmon field-enhanced fluorescence spectroscopy in PCT product analysis by peptide nucleic acid probes,” Nucleic Acid Res., Dec. 14, 2004, vol. 32, No. 22, e177, pp. 1-6.
Li et al., “Enhancing the efficiency of a PCR using gold nanoparticles,” Nucleic Acid Ress., Nov. 27, 2005, vol. 33, No. 21, e184, pp. 1-10.
International Search Report and Written Opinion from PCT/US2007/012844, Nov. 7, 2007, 10 pages.
U.S. Appl. No. 60/626,566, filed Nov. 9, 2004, Roper.
Asai, R.; Ootani, K.; Nomura, Y.; Nakamura, C.; Ikebukuro, K.; Arikawa, Y.; Miyake, J.; Karube, I. PCR-Based Ribosomal DNA Detection Technique for Microalga (Heterosigma carterae) Causing Red Tide and its Application to a Biosensor Using Labeled Probe. Marine Biotechnology (2003), 5(5), 417-423.
Boyer, D.; Tamarat, P.; Maali, A.; Lounis, B.; Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science (2002), 297, 1160-1163.
Caplin, B. E.; Rasmussen, R. P.; Bernard, P. S.; Wittwer, C. T. The most direct way to monitor PCR amplification for quantification and mutation detection. Biochemica (1999), 1, 5-8.
Carslaw H. S.; Jaeger, J. C. Conduction of Heat in Solids. 2.sup.nd Ed. Clarendon Press: Oxford. 1959 Cooper, F. Int J Heat Mass Transfer (1977) 991.
Demers, L. M; Oestblom, M; Zhang, H.; Jang, N.-H.; Liedberg, B.; Mirkin, C. A. Thermal Desorption Behavior and Binding Properties of DNA Bases and Nucleosides on Gold. Journal of the American Chemical Society (2002), 124(38), 11248-11249.
Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir (1993), 9(9), 2301-9.
Feriotto, G.; Gambari, R. Surface plasmon resonance based biosensor technology for real-time detection of PCR products. PCR Technology (2nd Edition) (2004), 141-153.
Goodrich, T. T.; Lee, H. J.; Corn, R. M. Direct Detection of Genomic DNA by Enzymatically Amplified SPR Imaging Measurements of RNA Microarrays. Journal of the American Chemical Society (2004), 126(13), 4086-4087.
Halte, V.; Bigot, J.-Y.; Palpant, B.; Broyer, M.; Prevel, B.; Perez, A. Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Applied Physics Letters (1999), 75(24), 3799-3801.
Hamad-Schifferil, K.; Schwartz, J. J.; Santos, A. T.; Zhang, S.; Jacobson, J. M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature (London, United Kingdom) (2002), 415(6868), 152-155.
Hartland, Gregory V. Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism. Journal of Chemical Physics (2002), 116(18), 8048-8055.
He, L.; Musick, M. D.; Nicewamer, S. R.; Salinas, F. G.; Benkovic, S. J.; Natan, M.J.; Keating, C. D. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. Journal of the American Chemical Society (2000), 122(38), 9071-9077.
Hu, M.; Hartland, G. V. Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size. Journal of Physical Chemistry B (2002), 106(28), 7029-7033.
Hu, M.; Hartland, G. V. Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size [Erratum for 2002, vol. 106B]. Journal of Physical Chemistry B (2003), 107(5), 1284.
Hu, M.; Wang, X.; Hartland, G. V.; Salgueirino-Maceira, Veronica; Liz-Marzan, Luis M. Heat dissipation in gold-silica core-shell nanoparticles. Chemical Physics Letters (2003), 372(5,6), 767-772.
Huettmann, G.; Radt, B.; Serbin, J.; Birngruber, R. Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses. Proceedings of SPIE—The International Society for Optical Engineering (2003), 5142 (Therapeutic Laser Applications and Laser-Tissue Interactions), 88-95.
Iborra, F. J.; Pombo, A.; McManus, J.; Jackson, D. A.; Cook, P. R. The topology of transcription by immobilized polymerases. Experimental Cell Research (1996), 229(2), 167-173.
Incropera, F. P.; DeWitt, D. P. Fundamentals of Heat and Mass Transfer. 2.sup.nd Ed. John Wiley & Sons: New York. 1985.
Jin R.; Wu G.; Li Z.; Mirkin C. A.; Schatz G. C. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. (2003) 125:1643-1654.
Kai, E.; Sawata, S.; Ikebukuro, K.; Iida, T.; Honda, T.; Karube, I. Detection of PCR products in solution using surface plasmon resonance. Analytical Chemistry (1999), 71(4), 796-800.
Kornberg, A.; Baker, T. A. DNA Replication 2.sup.nd Ed. W.H. Freeman & Co: New York 1991.
Lindroos, K.; Liljedahl, U.; Raitio, M.; Syvanen, A.-C. Minisequencing on oligonucleotide microarrays: comparison of immobilization chemistries. Nucleic Acids Research (2001), 29(13), e69/1-e69/9.
Link, S.; El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annual Review of Physical Chemistry (2003), 54 331-366.
Molecular Biology of the Cell@NCBI, Accessed May, 2004. (http://www.ncbi.nlm.nih.gov/books/bv.fcgi?tool=bookshelf&call=bv.View.ShowSection&searchterm=human&rid=cell.section.1607#1608).
Myszka, D. G.; He, X.; Dembo, M.; Morton, T. A.; Goldstein, B. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophysical Journal (1998), 75(2), 583-594.
Nilsson, J.; Bosnes, M.; Larsen, F.; Nygren, P.-A.; Uhlen, M.; Lundeberg, J. Heat-mediated activation of affinity-immobilized Taq DNA polymerase. BioTechniques (1997), 22(4), 744-746, 748-751.
Oldenburg, S.J.; Jackson, J.B.; Westcott, S.L.; Halas, N.J. Infrared extinction properties of gold nanoshells. Applied Physics Letters (1999), 75(19), 2897-2899.
Park, S-J.; Taton, T. A.; Mirkin, C. A. Array-based electrical detection of DNA with nanoparticle probes. Science (2002), 295(5559), 1503-1506.
Pastinen, T.; Kurg, A.; Metspalu, A.; Peltonen, L.; Syvanen, A.-C. Minisequencing: a specific tool DNA analysis and diagnostics on oligonucleotide arrays. Genome Research (1997), 7(6), 606-614.
Power, G. M.; Barrett, D. A.; Davies, M. C.; Pitfield, I. D.; Shaw, P. N. The study of BSA adsorption onto model-reversed phase chromatography surfaces using surface plasmon resonance. Book of Abstracts, 216th ACS National Meeting, Boston, Aug. 23-27, 1998.
Radt, B.; Serbin, J.; Lange, B. I.; Birngruber, R.; Huettmann, G. Laser-generated micro- and nanoeffects: inactivation of proteins coupled to gold nanoparticles with nano- and picosecond pulses. Proceedings of SPIE—The International Society for Optical Engineering (2001), 4433(Laser-Tissue Interactions, Therapeutic Applications, and Photodynamic Therapy), 16-24.
Roper, D. K. Enhancing Lateral mass transport to Improve the Dynamic Range of Adsorption Rates Measured by Surface Plasmon Resonance. Chem. Eng. Sci. (2006), 61(8), 2557-2564.
Roper, D. K. 2004b. Enhancing Lateral Mass Transport to Improve the Dynamic Range of Surface Plasmon Resonance and to Measure Macromolecule Adsorption Directly on 3-D Surfaces. Biophysical Journal. Submitted.
Roper, D. K. 2004c. Adenovirus Binding Measured by Surface Plasmon Resonance. AIChE Annual Meeting, Austin Tex. Nov. 8-12.
Roper, D. K.; Johnson, A; Lee, A; Taylor, J; Trimor, C; Wen, E. Membrane Filtration in Vaccine Bioprocessing. First International Conference on Membrane and Filt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Simultaneous amplification and detection of ribonucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Simultaneous amplification and detection of ribonucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simultaneous amplification and detection of ribonucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2622054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.