Relay with contact springs

Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Polarity-responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S078000

Reexamination Certificate

active

06323747

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a relay having
a base body,
an electromagnet system which is connected to the base body and has a coil, a core and an armature, and
a contact arrangement having at least one stationary contact spring and at least one moving contact spring which are anchored at least approximately in a common plane alongside one another in the base body and whose contact-making regions overlap one another by virtue of the L-shaped design of at least one contact spring, in which case it is possible for the armature to operate the moving contact spring via a slide which can move approximately at right angles to the longitudinal extent of said moving contact spring.
DE-AS 20 39 939 discloses a contact unit for such a relay. There, contact springs and mating contact supports are in each case anchored in a common plane in a dielectric body, lateral overlapping of the contact-making ends being achieved by means of bending. This involves a series of accurate bending processes during the production of the contact elements, the process of mounting in the dielectric body, which preferably involves embedding there, also being dependent on complex guidance and alignment.
DE 26 27 168 discloses a moving contact spring being split into two limbs, one limb being designed as a contact limb and the other as a restoring limb. Although use of this measure in a relay of the type mentioned above is possible, it would, however, involve a more complex design of the individual parts.
SUMMARY OF THE INVENTION
The aim of the present invention is to provide a relay of the type mentioned initially, which is equipped with contact springs of as simple a form as possible, in which case these contact springs are intended to be capable of being produced and assembled as easily as possible, in order that the relay, overall, can be produced in a particularly cost-effective manner.
According to the invention, this aim is achieved in that all the contact springs are designed as planar leaf springs without any permanent bending, and in that the stationary contact spring, resting on a stop on the base body, is prestressed by elastic deflection from its clamping-in plane.
Thus, in the case of the relay according to the invention, the contact arrangement (which, in the simplest case, is designed as a break contact or as a make contact) has only contact springs which are stamped from a planar metal sheet, are not prebent in any way and overlap one another by virtue of the L-shaped design of at least one spring end. Prestressing of the stationary contact spring in the rest state and a contact gap (if this is a make contact) are produced by a stop on the base body, on which stop the relevant contact spring rests only by virtue of insertion into the base body, and experiences corresponding deflection. For its part, the moving contact spring normally rests on the slide, by means of which (in the rest state and depending on the type of contact) it can likewise be deflected at this stage to a greater or lesser extent from its plane. In any case, the contact springs can be produced very cost-effectively and easily, since the respective spring characteristic is not achieved by permanent bends on the contact springs but by the geometry of the base body with the stop, at least for the stationary contact spring. If there are a number of contact springs, a number of different stops can also, of course, be provided in order to achieve correspondingly different prestresses.
A particularly simple design of the relay is obtained if a coil former having two coil flanges is used as the base body, the contact springs being anchored approximately parallel to the coil axis in a first coil flange, and the stop which produces the prestressing being provided on the second coil flange. Production becomes particularly cost-effective especially if the stationary contact spring and the moving contact spring are of identical design, being inserted into the base body in the common plane, with mirror-image symmetry with respect to one another.
In a preferred refinement of the relay according to the invention the magnet has a T-shaped system whose longitudinal limb extends axially through the coil former, a U-shaped armature being arranged on that side of the coil former which faces away from the contact springs, and the transverse web of the U-shaped armature being mounted in the region of the first coil flange on the free end of the core longitudinal limb, and the free ends of the longitudinal arms of the armature operating the slide.
A particularly simple design of the relay, with few parts, is also obtained if the moving contact spring exerts a restoring force on the armature, via the slide. In this case, a preferred refinement furthermore provides that via a fulcrum in the central region of its longitudinal limbs, the armature is forced by the restoring force of the contact spring into its mounting on the core end. This fulcrum can be produced without any additional parts by the armature having lateral shoulders which are integrally formed on both sides and rest on an inner edge of the housing cap.
An advantageous further refinement provides that, on a stationary contact spring, an integrally formed restoring spring arm, which is decoupled from the contact spring itself, acts on the slide and, via this slide, prestresses the armature into its rest position.
Owing to the fact that the restoring spring arm is integrally formed on a stationary contact spring which is any case supported on the base body, the dimensions and spring characteristics of the moving contact spring can be designed just to produce the respective contact pressure. This also allows a break contact or a changeover contact to be produced in a simple manner. In this case, no further individual parts are required apart from the additional break spring; the moving contact spring and the make contact spring can be used as in the case of the make-contact relay, without any design change. The restoring spring arm is preferably integrally formed on the stationary break contact spring, as a result of which no interference occurs with the moving contact spring, and this provides the solution with the simplest design.
The invention will be explained in more detail in the following text using exemplary embodiments and with reference to the drawings.


REFERENCES:
patent: 5392015 (1995-02-01), Matsuoka et al.
patent: 5790004 (1998-08-01), Matsuoka et al.
patent: 5894254 (1999-04-01), Reiter et al.
patent: 5896075 (1999-04-01), Kern
patent: 5905422 (1999-05-01), Doneghue
patent: 5936496 (1999-08-01), Kern
patent: 301930 (1954-12-01), None
patent: 2 039 939 (1973-12-01), None
patent: 32 02 579 (1983-08-01), None
patent: 36 44 172 (1988-07-01), None
patent: 43 16 285 (1993-12-01), None
patent: 43 26 685 (1994-02-01), None
patent: 0 784 330 (1997-01-01), None
patent: 2.180.914 (1973-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Relay with contact springs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Relay with contact springs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relay with contact springs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2618632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.