Method of improving impact resistance in golf ball core...

Games using tangible projectile – Golf – Ball

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S378000, C473S385000, C473S374000, C473S373000, C525S221000, C525S196000, C428S421000, C428S422000

Reexamination Certificate

active

06306049

ABSTRACT:

FIELD OF INVENTION
The present invention is directed toward novel golf ball core compositions and golf balls comprising such compositions, and to a method for forming golf balls containing such core compositions, particularly golf balls having dual cores. Golf balls of the invention have at least one core layer comprising at least one Low Modulus Ionomer (“LMI”) or corresponding acid terpolymer.
BACKGROUND OF THE INVENTION
Three-piece, wound golf balls with balata covers are preferred by most expert golfers. These balls provide a combination of distance, high spin rate, and control that is not available with other types of golf balls. However, balata is easily damaged in normal play, and, thus, lacks the durability required by the average golfer.
Therefore, most amateur golfers typically prefer a solid, two-piece ball with an ionomer cover, which provides a combination of distance and durability. Because of the hard ionomer cover, these balls are almost impossible to cut, but also have a very hard “feel”, which many golfers find unacceptable, and a lower spin rate, making these balls more difficult to draw or fade. The differences in the spin rate can be attributed to the differences in the composition and construction of both the cover and the core.
Recently, multilayer golf balls have become available, in an effort to overcome some of the undesirable aspects of conventional two-piece balls, such as their hard feel, while maintaining the positive attributes of these balls such as their increased initial velocity and distance. Multilayer golf balls typically comprise at least one of multiple core layers, a single or multiple intermediate or mantle layer, and/or multiple cover layers. Ideally, multilayer balls have “feel” and spin characteristics approaching those of wound balls. However, the use of at least one mantle or intermediate layer or of multiple core layers has, in some cases, adversely affected the durability of the core.
A number of elastomers such as polybutadiene, natural rubber, styrene butadiene rubber, and isoprene rubber, have been used in the manufacture of golf ball cores. However, golf ball cores are now predominantly made from compositions comprising polybutadiene. In order to obtain the desired physical properties for golf balls, manufacturers have added cross-linking agents, such as metallic salts of an unsaturated carboxylic acid to the polybutadiene, typically in an amount of about 20 to 50 pph of polybutadiene. Typically, either zinc diacrylate or zinc dimethacrylate is used as the cross-linking agent, with zinc diacrylate providing a higher initial velocity than zinc dimethacrylate.
Typically, about 5 to 50 pph of zinc oxide (ZnO) is also added to the composition, as both a filler and an activation agent for the zinc diacrylate/peroxide cure system. The zinc diacrylate/peroxide cure system, which is well known in the art, cross-links the polybutadiene during the core molding process. In addition to acting as an activation agent, zinc oxide has a high specific gravity (5.6 g/cm
3
) that allows the weight of the golf ball to be adjusted.
Regardless of the form of the ball, players generally seek a golf ball that delivers maximum distance, which requires a high initial velocity upon impact. Therefore, in an effort to meet the demands of the marketplace, manufacturers strive to produce golf balls with initial velocities in the USGA test that approach the USGA maximum of 250 ft/s plus 2 percent test tolerance or total of 255 ft/s as closely as possible.
To meet the needs of golfers having varying levels of skill and swing speeds, golf ball manufacturers frequently vary the compression of the ball, which is a measurement of the deformation of a golf ball or core in inches under a fixed load. Often, to maximize the initial velocity of a golf ball, the hardness of the core has been increased, which increases the compression of the golf ball. However, in general, the results of durability tests show that hard cores, particularly hard outer cores in dual core golf balls, are less durable than softer cores. Attempts to improve the durability of hard cores by the addition of impact modifiers, such as copolymers of ethylene and glycidyl acrylate, to standard core compositions have resulted in golf balls having a reduced initial velocity, thereby adversely affecting the overall performance of the ball.
Therefore, a need remains for a golf ball core composition containing an impact modifier that provides a golf ball core having improved toughness and impact strength with the initial velocity of prior art golf ball cores that lack an impact modifier. The present invention provides such a core composition for golf balls.
SUMMARY OF THE INVENTION
The present invention is directed to a golf ball that comprises a cover and a core, and, optionally, at least one intermediate or mantle layer between the cover and the core, where at least a portion of the core is formed by molding a rubber or elastomer blend for a time and at a temperature sufficient to cross link the blend, the blend comprising a base rubber, which is preferably free of cross linking, a metal salt acrylate or diacrylate, an initiator, and at least one low modulus ionomer or acid terpolymer of the formula:
wherein
R
1
, R
2
, and R
3
are hydrogen or CH
3
;
R
4
is linear or branched alkyl of formula C
n
H
2n+1
, where n is an integer of from 1 to about 20, such as CH
3
, C
2
H
5
, C
3
H
7
, C
4
H
9
, and C
5
H
11
;
M
+
is H
+
, Li
+
, Na
+
, Zn
++
, Mg
++
, Ca
++
, Ti
++
, Mg
++
, Na
+
, W
+++
, or Zr
++
; and
x ranges from about 20 to about 85 weight per cent of the polymer, y ranges from about 1 to about 50 weight per cent of the polymer, and z ranges from about 1 to about 30 weight per cent of the polymer. The at least one low modulus ionomer or acid terpolymer preferably has a dynamic shear storage modulus at of at least about 10
4
dynes/cm
2
and a loss tangent of no more than about 1 at a frequency of about 1 Hz at 23° C. Preferably the portion of the core formed from the core composition of the invention is an outer core layer, such that the core is at least a dual core, i.e., a core comprising at least two layers. The preferred core layer typically has a hardness of at least about 15 Shore A to about 65 Shore D, a flexural modulus of at least about 500 psi, and a specific gravity of at least about 0.7. Golf balls in accordance with the invention preferably have a cover, having a thickness of from about 0.03 inch to about 0.125 inch and at least about 70 percent dimple coverage, and a core, having a diameter of from about 0.5 to about 1.6 inches and PGA compression of from about 40 to about 90. Golf balls of the invention also preferably have a PGA compression of from about 60 to about 120 and a coefficient of restitution of at least about 0.7 at an incoming velocity of 125 ft/sec, i.e., when a golf ball of the invention is propelled at a hard surface with a velocity of 125 ft/sec, it will rebound with a velocity of at least about 87.5 ft/sec. Where at least one optional mantle or intermediate layer is present, the mantle or intermediate layer typically has a thickness of at least about 0.02 inch, and the core has a diameter of less than about 1.6 inches. Any of the cover, the core, or the at least one optional mantle or intermediate layer may comprise a density adjusting filler material to increase or decrease the density. In addition, any of the cover, the core, or the at least one optional mantle or intermediate layer may have a foamed structure. The at least one optional mantle or intermediate layer may be formed from any appropriate polymeric material, or may be formed from a wound elastomeric layer.
Preferably, the low modulus ionomer or acid terpolymer has a flexural modulus of from about 500 to about 35,000 psi and a hardness of from about 40 Shore A to about 40 Shore D. Low modulus ionomers and acid terpolymers useful in the invention include, but are not limited to, terpolymers comp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of improving impact resistance in golf ball core... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of improving impact resistance in golf ball core..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of improving impact resistance in golf ball core... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.