Hydrodynamic bearing apparatus

Bearings – Rotary bearing – Fluid bearing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C384S107000, C384S132000

Reexamination Certificate

active

06296391

ABSTRACT:

BACKGROUND OF THE INVENTION
a) Field of the Invention
The present invention relates to a hydrodynamic bearing apparatus which is structured such that a shaft member and a bearing member rotatably support each other by hydrodynamic pressure generated in a lubricant.
b) Description of the Related Art
In recent years, various hydrodynamic bearing apparatus using the hydrodynamics of lubricants, such as oil and the like, are studied and provided to respond to high-speed rotations in various apparatus such as motors and the like. These hydrodynamic bearing apparatus are such that the hydrodynamic surface on the side of a shaft member is placed across from the hydrodynamic surface on the side of a bearing member which is fit around or to the end of the shaft member via a predetermined space, at least one of the facing hydrodynamic surfaces comprises a hydrodynamic generating groove and the pressure of a lubricant between the facing surfaces of the shaft member and bearing member is increased by a pumping action of the hydrodynamic generating groove during rotation such that both members are supported in relation to each other by the hydrodynamic pressure of the lubricant.
Hydrodynamic bearing apparatus, as described above, comprise lubricants such as oil and the like (simply “lubricants” hereafter) in the bearing section; there are two types of support structures for the lubricants:
1) Partial lubricant filling structure
This is the simplest structure for a hydrodynamic bearing in which a lubricant fills only the bearing section and in which an air layer is formed between bearings. For example, in an apparatus described in Tokkai S58-50318, two hydrodynamic bearing sections are separately formed in the axial direction while a lubricant filling the inside of the two hydrodynamic bearing sections is separated by an air layer. In such a hydrodynamic bearing apparatus having a separated lubricant, the lubricant inside each hydrodynamic bearing section is maintained by surface tension while the air layer between the hydrodynamic bearing sections is open to the atmosphere via a continuing clearance hole formed on the shaft member.
2) Lubricant circulating structure
This is a structure in which the lubricant also fills the space between the bearings and both ends of the bearings are connected by a circulating hole. Therein, the lubricant is circulated so that internal pressure differences (differential pressures) generated during rotation are nullified. According to this structure, it is possible to maintain a sufficient amount of the lubricant to prolong the life of the bearings; also, it is advantageous to prevent the lubricant from leaking externally since the internal pressure differences (differential pressures) of the lubricant are always nullified by the circulating hole.
Each of the above mentioned conventional hydrodynamic bearing structures, however, has problems. In the case of the partial lubricant filling structure 1), it is difficult to control the injected amount of the lubricant, and the absolute amount of the lubricant is small due to the small space in the bearing section, causing the following problems. First, initial start up causes friction in the bearing; friction powder or sludge mixed into the lubricant increases the viscosity of the lubricant such that the bearing characteristics are deteriorated. Also, the amount of the lubricant circulated during rotation is low such that the temperature of the lubricant tends to increase, resulting in deterioration caused by heat. As a result, the life of the bearing is shortened. If the filling space for the lubricant is increased to increase the overall amount of the lubricant, the lubricant tends to leak. Furthermore, since the volume of the air layer expands/contracts due to the changes in the pressure and the temperature of the air layer between the bearings such that moving and leaks of the lubricant are the results. In order to prevent this condition, it is necessary to provide a hole continuing to the outside and the like.
On the other hand, in the case of the lubricant circulating structure 2), as explained above, the structure becomes complicated due to the circulating hole, causing poor productivity and high manufacturing costs.
OBJECT AND SUMMARY OF THE INVENTION
For the above reasons, a primary object of the present invention is to provide a hydrodynamic bearing apparatus in which a simple and low-cost structure is provided, leaks of the lubricant can be prevented while the life of the bearing is prolonged and wide applications are enabled.
In accordance with the invention, a hydrodynamic bearing apparatus comprises two hydrodynamic bearing sections which have a shaft member, a bearing member fit to the shaft member with a predetermined space therein, lubricants filling the space between the shaft member and the bearing member, and which are separately placed in the axial direction of the shaft member. The lubricants of the two hydrodynamic bearing sections are separated from each other by an air layer. The lubricants are pressured by hydrodynamic generating grooves formed on the hydrodynamic bearing sections such that the shaft member and the bearing member are rotatably supported in relation to each other. The hydrodynamic generating grooves separately formed on the two hydrodynamic bearing sections are formed into an unbalanced shape such that the lubricants are moved in a predetermined direction to correct the slope of the shaft member and the bearing member when rotation is suspended. Capillary sealing sections are formed in continuation to end sections of each of the two hydrodynamic bearing sections to sustain the lubricants by capillarity. The maximum amount of the lubricant in one of the capillary sealing sections, which is located downstream in the moving direction of the lubricants, is established to be larger than the moving amount of the lubricants.


REFERENCES:
patent: 4795275 (1989-01-01), Titcomb et al.
patent: 5141338 (1992-08-01), Asada et al.
patent: 5559382 (1996-09-01), Oku et al.
patent: 5791785 (1998-08-01), Nose et al.
patent: 5806987 (1998-09-01), Nose et al.
patent: 58-50318 (1983-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrodynamic bearing apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrodynamic bearing apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrodynamic bearing apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.