Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
1999-09-13
2001-02-06
Le, H. Thi (Department: 1773)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C148S301000, C148S311000, C420S080000, C420S083000, C428S690000
Reexamination Certificate
active
06183868
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to spindle-shape goethite particles and a process for producing the same, spindle-shaped hematite particles and a process for producing the same, and spindle-shaped magnetic iron based alloy particles and a process for producing the same. More particularly, the present invention relates co spindle-shaped goethite particles and spindle-shaped hematite particles, which have a narrow particle size distribution, include no dendrites, and have an appropriate particle shape and a large aspect ratio (major axial diameter/minor axial diameter), to spindle-shaped magnetic iron based alloy particles which are obtained from the spindle-shaped goethite particle or spindle-shaped hematite particles as precursor particles and which have a high coercive force and an excellent coercive force distribution, and to a process for producing the shame.
Miniaturized and lightweight video or audio magnetic recording and play-back apparatuses for long-time recording have recently shown a remarkable progress. Especially, video tape recorders (VTR) have rapidly spread wide and more miniaturized and lighter-weight VTR's for longer-time recording have been developed rapidly. With this development, magnetic recording media such as a magnetic tape have been strongly required to have a higher performance and a higher recording density.
In other words, magnetic recording media are required to have a higher picture quality and higher output characteristics, in particular, to improve the frequency response. For this purpose, it is necessary to improve the residual flux density (Br), the coercive force, the dispersibility, the packing property and the surface smoothness of the magnetic media, i.e., to improve the S/N ratio of the magnetic media.
These properties of magnetic recording media strongly depend on the magnetic particles used in the magnetic recording media. In recent years, magnetic iron based alloy particles have attracted attention due to their higher coercive force and higher saturation magnetization than those of conventional iron oxide magnetic particles, and have been put to practical use as magnetic media such as digital audio tapes (DAT), 8-mm video tapes, Hi-8 tapes and video floppies. Such magnetic iron based alloy particles, however, are also strongly required improvement of the properties.
The relationship between various properties of magnetic recording media and magnetic particles used therefor is described in the following.
In order to obtain a high picture quality, magnetic recording media for VTR's are required to improve (1) a video S/N ratio, (2) a chroma S/N ratio and (3) a video frequency response, as is obvious from the description in NIKKEI ELECTRONICS, May 3, pp. 82 to 105 (1976).
In order to improve the video S/N ratio and the chroma S/N ratio, it is important to improve the dispersibility of the magnetic particles in a vehicle, the orientation property and the packing property of the magnetic particles in a coating film, and the surface smoothness of the magnetic recording media. Such magnetic particles are required to have a narrow particle size distribution, to include no dendrites and, in addition, to have appropriate particle shape and aspect ratio.
In order to improve the video frequency response, it is necessary that the magnetic recording medium has high coercive force Hc and residual flux density Br. In order to enhance the coercive force Hc of the magnetic medium, magnetic particles are required to have as high a coercive force as possible. Since the coercive force of magnetic particles is generally dependent upon the shape anisotropy, the coercive force has a tendency to increment with the increase in the aspect ratio of the magnetic particles.
For increasing the output characteristics, Japanese Patent Application Laid-Open (KOKAI) No. 63-26821 (1988) describes: “
FIG. 1
shows the relationship between the S.F.D. and the recording and play-back output of the magnetic disk . . . . The relationship between the S.F.D. and the recording and play-back output is linear, as is seen from
FIG. 1
, which proves that the use of ferromagnetic particles having a small S.F.D. value enhances the recording and play-back output. That is, in order to increase the recording and play-back output, the S.F.D. should be as small as possible. In order to obtain a higher output than the ordinary one, it is necessary that the S.F.D. is not more than 0.6.″ As is clear from the above descriptions, it is necessary that the S.F.D. (Switching Field Distribution), i.e., the coercive force distribution should be as small as possible. For this purpose, magnetic particles are required to have as narrow a particle size distribution as possible and to include no dendrites.
As described above, magnetic iron based alloy particles which have a narrow particle size distribution, which include no dendrites, which have appropriate particle shape and aspect ratio, and which have a high coercive force and an excellent coercive force distribution, are now in the strongest demand.
Magnetic iron based alloy particles are usually obtained by, if necessary, heat-treating in a non-reducing atmosphere and heat-treating in a reducing gas atmosphere, goethite particles as precursor particles, hematite particles obtained by dehydrating the goethite particles, the goethite particles containing metals other than iron and the hematite particles containing metals other than iron. Consequently, magnetic iron based alloy particles are succeeded to the shape of the goethite particles as precursor particles, and it is known that the larger the aspect ratio of the goethite particles, the larger the aspect ratio of the magnetic iron based alloy particles become. It is, therefore, necessary to use goethite particles having a narrow particle size distribution, including no dendrites, and having appropriate particle shape and aspect ratio in order to produce magnetic iron based alloy particles which have various properties described above. It is also necessary that the magnetic iron based alloy particles should retain and inherit the particle shape and narrow particle size distribution in the heat-treating process.
Various methods are conventionally known as a method of producing goethite particles as a precursor particles of magnetic iron based alloy particles. Especially, the following methods are known as a method of adding a metal compound in advance such as Co compounds which has an effect on improvement of the magnetic properties on the magnetic iron based alloy particles, and Al compounds which has a high anti-sintering effect on the magnetic iron based alloy particles and has an excellent shape retention property.
For example, a method of producing accusal goethite particles comprising oxidizing a suspension containing colloidal ferrous hydroxide which is obtained by adding not more than one equivalent of an aqueous alkali hydroxide solution to a ferrous salt solution in the presence of a cobalt compound, introducing an oxygen-containing gas into the suspension at 50° C., and further bringing the accusal goethite particles into growth reaction (Japanese Patent Application Laid-Open (KOKAI) No. 7-11310 (1995));
a method of producing spindle-shaped goethite particles comprising introducing an oxygen-containing gas into a suspension containing FeCO
3
which is obtained by reacting a ferrous salt solution with an acidic Al salt compound with an aqueous alkali carbonate solution with a basic Al salt compound added thereto (Japanese Patent Application Laid-Open (KOKAI) No. 6-228614 (1994));
a method of producing a growth of the goethite seed particles comprising hydrolyzing a neutralized solution of a ferric salt and a Co compound with an aqueous hydroxide solution, and hydrolyzing the neutralized solution, in an aqueous ferric salt solution containing an Al compound with an aqueous hydroxide solution (Japanese Patent Publication No. 58-176902 (1983)); and
a method of producing spindle-shaped goethite particles comprising aging, in a non-oxidizing atmosphe
Kurokawa Haruki
Mori Kohji
Le H. Thi
Nixon & Vanderhye
Toda Kogyo Corporation
LandOfFree
Spindle-shaped goethite particles, spindle-shaped hematite... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spindle-shaped goethite particles, spindle-shaped hematite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spindle-shaped goethite particles, spindle-shaped hematite... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2610604