Tricyclic compounds for the inhibition of the ICE/ced-3...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06187771

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to novel classes of compounds which are inhibitors of interleukin-1&bgr; converting enzyme and related proteases (“ICE/ced-3 family of cysteine proteases”). This invention also relates to pharmaceutical compositions comprising these compounds and to methods of using such pharmaceutical compositions. The compounds, pharmaceutical compositions and methods of this invention are particularly well suited for inhibiting the protease activity of the ICE/ced-3 family and consequently, may be advantageously used as agents against interleukin-1 (“IL-1”) mediated diseases, including inflammatory diseases, autoimmune diseases and neurodegenerative diseases and for inhibiting unwanted apoptosis in various disease states such as ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease).
Interleukin 1 (“IL-1”) is a major pro-inflammatory and immunoregulatory protein that stimulates fibroblast differentiation and proliferation, the production of prostaglandins, collagenase and phospholipase by synovial cells and chondrocytes, basophil and eosinophil degranulation and neutrophil activation. Oppenheim, J. H. et al.,
Immunology Today,
7:45-56 (1986). As such, it is involved in the pathogenesis of chronic and acute inflammatory and autoimmune diseases. IL-1 is predominantly produced by peripheral blood monocytes as part of the inflammatory response. Mosely, B. S. et al.,
Proc. Nat. Acad. Sci.,
84:4572-4576 (1987); Lonnemann, G. et al.,
Eur. J. Immunol.,
19:1531-1536 (1989).
IL-1&bgr; is synthesized as a biologically inactive precursor, proIL-1&bgr;. ProIL-1&bgr; is cleaved by a cysteine protease called interleukin-1&bgr; converting enzyme (“ICE”) between Asp-116 and Ala-117 to produce the biologically active C-terminal fragment found in human serum and synovial fluid. Sleath, P. R. et al.,
J. Biol. Chem.,
265:14526-14528 (1992); A. D. Howard et al.,
J. Immunol.,
147:2964-2969 (1991).
ICE is a cysteine protease localized primarily in monocytes. In addition to promoting the pro-inflammatory and immunoregulatory properties of IL-1&bgr;, ICE, and particulary its homologues, also appear to be involved in the regulation of cell death or apoptosis. Yuan, J. et al.,
Cell,
75:641-652 (1993); Miura, M. et al.,
Cell,
75:653-660 (1993); Nett-Giordalisi, M. A. et al.,
J. Cell Biochem.,
17B:117 (1993). In particular, ICE or ICE/ced-3 homologues are thought to be associated with the regulation of apoptosis in neurogenerative diseases, such as Alzheimer's and Parkinson's disease. Marx, J. and M. Baringa,
Science,
259:760-762 (1993); Gagliardini, V. et al.,
Science,
263:826-828 (1994).
Thus, disease states in which inhibitors of the ICE/ced-3 family of cysteine proteases may be useful as therapeutic agents include: infectious diseases, such as meningitis and salpingitis; septic shock, respiratory diseases; inflammatory conditions, such as arthritis, cholangitis, colitis, encephalitis, endocerolitis, hepatitis, pancreatitis and reperfusion injury, ischemic diseases such as the myocardial infarction, stroke and ischemic kidney disease; immune-based diseases, such as hypersensitivity; auto-immune diseases, such as multiple sclerosis; bone diseases; and certain neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
ICE inhibitors represent a class of compounds useful for the control of the above-listed disease states. Peptide and peptidyl inhibitors of ICE have been described. However, such inhibitors have been typically characterized by undesirable pharmacologic properties, such as poor oral absorption, poor stability and rapid metabolism. Plattner, J. J. and D. W. Norbeck, in
Drug Discovery Technologies,
C. R. Clark and W. H. Moos, Eds. (Ellis Horwood, Chichester, England, 1990), pp. 92-126. These undesirable properties have hampered their development into effective drugs.
Accordingly, the need exists for compounds that can effectively inhibit the action of the ICE/ced-3 family of proteases, for use as agents for preventing unwanted apoptosis and for treating chronic and acute forms of IL-1 mediated diseases, such as inflammatory, autoimmune or neurodegenerative diseases.
The compounds of this invention incorporate a conformationally constrained dipeptide mimetic. This mimetic exhibits improved properties relative to their peptidic counterparts, for example, such as improved absorption and metabolic stability resulting in enhanced bioavailability.
SUMMARY OF THE INVENTION
One aspect of this invention is compounds of the formula:
wherein:
n is 1 or 2;
m is 1 or 2;
A is R
2
CO—, R
3
—O—CO—, or R
4
SO
2
—;
a group of the formula:
further wherein:
R
1
is a hydrogen atom, alkyl or phenylalkyl;
R
2
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;
R
3
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl or (substituted phenyl)alkyl;
R
4
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;
R
5
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;
R
6
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted phenyl)alkyl;
R
7
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;
R
8
is an amino acid side chain chosen from the group consisting of natural and unnatural amino acids;
B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, (heteroaryl)alkyl, or a halomethyl group;
a group of the formula:
—CH
2
XR
9
;
wherein R
9
is phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl; and X is an oxygen or a sulfur atom;
a group of the formula:
—CH
2
—O—CO—(aryl);
a group of the formula:
—CH
2
—O—CO—(heteroaryl);
a group of the formula:
—CH
2
—O—PO—(R
10
)R
11
;
wherein R
10
and R
11
are independently selected from a group consisting of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl;
or a pharmaceutically-acceptable salt thereof.
A further aspect of the instant invention are pharmaceutical compositions comprising a compound of the above Formula 1 and a pharmaceutically-acceptable carrier therefor.
Another aspect of this invention involves a method for treating an autoimmune disease comprising administering an effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
Yet another aspect of the instant invention is a method of treating an inflammatory disease comprising administering an effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
A further aspect of the instant invention is method of treating a neurodegenerative disease comprising administering a pharmaceutically effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
Yet another aspect of the instant invention is a method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
DETAILED DESCRIPTION
One aspect of the instant invention is compounds of the Formula 1:
wherein:
n is 1 or 2;
m is 1 or 2;
A is R
2
CO—, R
3
—O—CO—, or R
4
SO
2
—;
a group of the formula:
further wherein:
R
1
is a hydrogen atom, alkyl or phenylalkyl;
R
2
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;
R
3
is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted phenyl)alkyl;
R
4
is alkyl, cycloalkyl, (cycloalkyl)alkyl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tricyclic compounds for the inhibition of the ICE/ced-3... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tricyclic compounds for the inhibition of the ICE/ced-3..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tricyclic compounds for the inhibition of the ICE/ced-3... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2609052

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.