Electric power conversion systems – Current conversion – Including d.c.-a.c.-d.c. converter
Reexamination Certificate
1999-10-07
2001-02-13
Wong, Peter S. (Department: 2838)
Electric power conversion systems
Current conversion
Including d.c.-a.c.-d.c. converter
C363S041000, C363S097000
Reexamination Certificate
active
06188588
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to power conversion and in particular to power supplies. Still more particularly, the present invention relates to a switching controller for operating a flyback power converter in a critically continuous conduction mode to achieve high power factor and a method of operation thereof.
2. Description of the Related Art
Regulated DC power supplies are employed in various analog and digital electronic systems. The power supplies are typically designed to produce a regulated output, i.e., the output voltage is maintained within a specific range, with electrical isolation between the input and output. Additionally, power supplies may be designed to provide multiple outputs, e.g., positive and negative, that differ in voltage and current ratings. Two conventional topologies utilized in DC power supplies are a linear design topology and a switching design topology.
In the linear design topology, a low-frequency, e.g., 60 Hertz, transformer is used to provide electrical isolation between the input and output of the power supply with a transistor acting as an adjustable resistor. While the linear power supply employs a simple design and introduces a moderate electromagnetic interference (EMI) with other equipment employed therewith, the topology endures several limitations. First, low-frequency transformers are relatively large and, as a result, the dimensions of the linear power supply are constrained to accommodate a large low-frequency transformer. Due to the size limitations, the linear power supply is not preferable, especially in environments where the components are being downsized. Additionally, the transistor, acting as an adjustable resistor, operates within its active region, thereby resulting in a significant amount of power loss. Typically, the overall efficiencies of the linear power supplies are between 30% to 60%.
In contrast to the linear power supplies, the transformation of the DC voltage in switching power supplies is accomplished using DC/DC converters. The DC/DC converters usually employ solid-state devices, e.g., transistors, as switching devices that are completely on or completely off. Since the devices do not operate in the active region, power dissipation therethrough is significantly reduced, resulting in a higher efficiency converter; typically 70% to 90% efficient. Additionally, since switching power supplies employ a high frequency isolation transformer, the size and weight of the switching power supplies may be significantly reduced.
A switching, or switch-mode, power converter generally includes an inductor, or transformer, coupled to an input power source and a switching transistor. When the switching transistor is turned on, energy is supplied to the inductor or transformer from the input power source. When the switching transistor is off, the output stage, comprising a rectifying diode and an output capacitor, receives energy from the inductor and the input voltage source. The operation of the switching transistor is controlled such that the converter output is well-regulated.
Current approaches to providing an efficient, high power factor power converter with an isolated low DC output voltage includes using a buck-boost converter and its relatives (flyback, Cuk and SEPIC) that are known to draw theoretically perfect sine wave current when the converters are operated in a discontinuous conduction mode (DCM). In cost-sensitive applications, however, the above mentioned power converters are less attractive than a boost converter due to the poorer exploitation of the power switch and/or the additional inductor and capacitor. To produce an isolated low output voltage, a boost converter generally employs a nonisolated Boost stage that generates an intermediate high voltage level, e.g., 400 VDC. A second “chopper” stage then converts this intermediate voltage to the required low output level. The use of two power stages, i.e., boost and chopper stages, however, also increases the cost and lowers the overall efficiency of the power converter.
Accordingly, what is needed in the art is an improved power converter with an isolated low voltage output that mitigates the above mentioned limitations. In particular, there is a need in the art for a more efficient, high power factor flyback power converter that is operable in a critically continuous conduction mode.
SUMMARY OF THE INVENTION
It is an therefore an object of the present invention to provide an improved and more efficient flyback converter.
It is another object of the present invention to provide a switching controller and method for operating a flyback converter in a critically continuous conduction mode.
To achieve the foregoing objects, and in accordance with the invention as embodied and broadly described herein, a switching controller for use in a power converter having a controllable switch and operable in a critically continuous conduction mode (CCCM) is disclosed. The switching controller includes an error amplifier that senses an electrical characteristic of the power converter and compares the electrical characteristic to a reference electrical characteristic to generate an error signal. Next, the error signal is provided to a drive signal generator, which is coupled to the controllable switch, that compares the error signal to a reference waveform and provides, in response thereto, a drive signal to the controllable switch. A waveform shaping circuit modifies the reference waveform by comparing a sensed voltage across the controllable switch to an input voltage and provides, in response to the sensed voltage being lower than the input voltage, a modifying signal to the drive signal generator. The modifying signal modifies the reference waveform which also causes the drive signal generator to turn-on the controllable switch.
The present invention discloses a novel control circuit for controlling the operation of a switch in a switching power converter utilizing a voltage characteristic, e.g., drain voltage, of the switch as a turn-on condition. The control scheme employed by the present invention is such that the switching device turns on, i.e., conducts, at a time when the energy stored in the magnetizing inductance of a power transformer has been delivered to a load and the drain voltage of the switching device is at its minimum. These conditions allow for zero-current-switching (ZCS), thereby eliminating, or substantially reducing, switching losses. Additionally, a controlled delay in turning on the switching device will also force the magnetizing inductance of the power transformer to “ring” with the switching device's interelectrode capacitance, thus allowing the switch to be turned on at a voltage that is lower than the input voltage, thereby reducing the switching losses due to the interelectrode capacitance. Furthermore, by waveshaping the input line current, a high power factor approaching unity is also realized.
In one embodiment of the present invention, the waveform shaping circuit includes an operational amplifier (op-amp), exclusive OR gate and a second controllable switch. The op-amp is configured as an comparator, wherein the voltage sensed across the controllable switch and the input voltage are coupled to an inverting node and a noninverting node, respectively, of the op-amp. The gate inputs of the exclusive OR gate are coupled to an output of the op-amp and to the drive signal generated by the drive signal generator. The output of the exclusive OR gate, in turn, controls the operation of the second controllable switch. In a related embodiment, the second controllable switch is a bipolar junction transistor (BJT). It should be noted that the second controllable switch need not necessarily be limited to a switching transistor, other switching devices may also be advantageously utilized.
In another embodiment of the present invention, the electrical characteristic measured and referenced is voltage. Thus, the measured electrical characteristic is a output voltage of the power conv
Hemena William
Malik Randhir S.
Dillon Andrew
International Business Machine Corporation
Schelkopf J. Bruce
Vu Bao Q.
Wong Peter S.
LandOfFree
Switching controller and method for operating a flyback... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Switching controller and method for operating a flyback..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switching controller and method for operating a flyback... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2606051