Virtual reality, tissue-specific body model having...

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06310619

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to a model of a human or animal body, and, more particularly, to a computer-implemented virtual reality, tissue-specific body model having user-variable tissue-specific attributes.
BACKGROUND OF THE INVENTION
The somatic portion of a body, either human or animal, is distinct from the visceral internal organs, and represents the structural elements of the body form. The skeletal system, made of bone and cartilage is moved by the somatic muscular system attached to the bones directly or by way of tendons. The muscles which are voluntarily contracted to create purposeful movement are regulated by the nervous system. This anatomical triad, the neuromusculoskelatal system is responsible for the body's stature and physique, posture and movement, and its ability to perform activities and work.
Functional attributes of the somatic system are, therefore, of great interest to persons in a wide variety of fields. For example, medical students study the somatic system to learn normal human anatomy, professional athletes study the somatic system in an effort to maximize their efficiency of movement, people in the manufacturing industry study how the human anatomy interacts with manufactured products, etc. In this regard, however, it is often difficult to accurately determine how a particular body will function or interact to stimuli since study has historically been performed by observation of living persons or cadavers.
To facilitate the study and analysis of the human body, therefore, systems and methods for modeling and analyzing body motions using a computer have recently been developed. Typically, the modeling involves creating a three-dimensional (hereinafter “3D”) representation of the body, and animating the model on a computer display using known physical constraints for the segments forming the body. The model can, therefore, be animated to “move” according to standard prescripted programs and the known physical constraints.
An example of such a computer implemented model is provided in the disclosure of U.S. Pat. No. 5,625,577 to Kunii et al (hereinafter “the '577 patent”), the teachings of which are incorporated herein by reference. The model disclosed in the '577 patent is divided into a plurality of segments connected by joints. Each of the segments operates as a separate unit of motion. Data for modeling the body on the basis of physical constraints and the inherent physical nature of each segment is maintained in a computer-readable database. Actual movements of a moving body, including the movement of each segment, are then observed and analyzed to calculate new data based on the actual movements. A new movement for the body can then be modeled using the data from actual movements and physical constraints for each segment, which are invariable parameters set in the database for the model.
Unfortunately, however, models and systems for modeling such as that described in the '577 patent, have failed to provide a useful level of detail in regard to the anatomical structure of the modeled body. In fact, most models incorporate only broadly defined anatomical segments in order to reduce computational complexity and computer rendering time. Models including high levels of anatomical detail are generally limited to only specific body segments, e.g., a single hand or foot. There has been no model, to date, which provides a highly-detailed tissue-specific animation of an entire human body. Naturally, the level of model detail provided by a tissue-specific total body model which “moves” in a realistic manner would be highly useful in studying the human anatomy.
Another deficiency of known models, is a failure to provide versatility in terms of the modeled anatomy and its associated functions. In fact, most models are based on specific data representations of broadly defined anatomical segments which cannot be user-modified. Thus, the models represent only a particular body, with a particular shape and physical constraints. The body can, therefore, function in its animation only in a pre-defined, invariable manner. A user cannot modify the displayed model to show a body having detailed segments of varying size, weight, strength, etc. This feature would, however, be highly desirable since it would facilitate analysis of different body and segment shapes, and of functional abnormalities which could be analyzed for investigation of possible corrective approaches.
Moreover, known computer-implemented models are presented in either a static form or with only pre-scripted motion in a static environment. The user cannot manipulate the model to cause animated movement of choice, and cannot change the physical constraints of the environment in which the model is displayed and/or animated in a manner which effects the performance of tissues defined by variable attributes. For example, in a typical model, such as that disclosed in the '577 patent, the body is animated in a particular size and shape, and to account for standard Newtonian physical parameters wherein the effects of the force and direction of gravity on the broadly-defined anatomical segments are modeled based on invariable segment shapes and dimensions. A user cannot, therefore, modify the environment and the body within the environment to account for different gravitational effects, such as would exist for example in space or in moving objects.
There is, therefore, a need in the art for a computer implemented, tissue-specific, three-dimensional, virtual reality model of a human or animal body, which includes user-variable, tissue-specific parameters relating to anatomical, physiological, dimensional, environmental, and Newtonian physical attributes, and which may be animated on a computer screen in an computer implemented environment having user-variable Newtonian physical characteristics.
OBJECTS OF THE INVENTION
A primary object of the present invention is to provide a computer-implemented, tissue-specific model of the somatic structure of a human body which may be animated by the computer on a display in three-dimensional virtual reality.
Another object of the present invention is to provide a computer-implemented, tissue-specific model of the somatic structure of a human body which may be animated by the computer on a display, and which includes user-variable, tissue-specific parameters or attributes allowing for variation of the anatomical, physiological, dimensional, environmental, and physical aspects of the model on a tissue-by-tissue basis.
Still another object of the present invention is to provide a computer-implemented, tissue-specific model of the somatic structure of a human body which may be animated by the computer on a display, and which includes user-variable, tissue-specific parameters or attributes allowing for variation of the anatomical, physiological, dimensional, and physical aspects of the model on a tissue-by-tissue basis by use of a haptic interface, thereby allowing adjustment of the parameters or attributes so that the model approximates the attributes of the model to approximate the tissue-specific parameters or attributes of a user.
Yet another of the present invention is to provide a computer-implemented, tissue-specific model of the somatic structure of a human body which may be animated by the computer on a display which includes a computer-implemented environment, wherein the Newtonian physics and environmental aspects of the environment, e.g., the force and direction of gravity, atmospheric pressure etc., may be user-modified.
A further object of the present invention is to provide a computer-implemented, tissue-specific model of the somatic structure of a human body which may be animated by the computer on a display, and which includes user-variable, tissue-specific parameters or attributes allowing for variation of the anatomical, physiological, dimensional, and physical aspects of the model on a tissue-by-tissue basis, and which provides inverse dynamics calculations as output to a user for analysis of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual reality, tissue-specific body model having... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual reality, tissue-specific body model having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual reality, tissue-specific body model having... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606014

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.