Zoom lens system

Optical: systems and elements – Lens – With variable magnification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S683000, C359S684000, C359S685000

Reexamination Certificate

active

06185048

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a zoom lens system, and more particularly to a compact yet low-cost zoom lens system used with cameras using an electronic image pickup means such as camcorders, digital cameras, etc.
2. Discussion of Related Art
To achieve size and weight reductions of a consumer-oriented zoom lens system in this field, a specific zoom lens system has been proposed, which comprises four lens groups, i.e., a positive lens group, a negative lens group, a positive lens group and a positive lens group in order from an object side thereof, as typically disclosed in JP-A's 4-43311 and 4-78806. For zooming, the second negative lens group moves on an optical axis while the first and third lens groups remain fixed. The fourth lens group moves to make correction for a fluctuation in the position of an image plane in association with zooming. A further size reduction is achievable by a specific zoom lens system wherein, as typically disclosed in JP-A's 6-94997 and 6-194572, a third lens group moves from an image plane side to an object side of the system during zooming from a wide-angle end to a telephoto end of the system. Such zoom lens systems have a relatively high zoom ratio of the order of 8 to 12. However, these zoom lens systems are still insufficient for zoom lens systems having a lower zoom ratio while weight is placed on ever smaller size and ever lower cost, because of a large number of lenses.
In the zoom lens system disclosed in JP-A 6-94997, the first lens group consists of a negative lens, a positive lens and a positive lens, three in all; the second lens group consists of a negative lens, a negative lens and a positive lens, three in all; the third lens group consists of a positive lens, a positive lens and a negative lens, three in all or a positive lens and a negative lens, two in all; and the fourth lens consists of one positive lens. In the zoom lens system disclosed in JP-A 6-194572, the first lens group consists of a negative lens and a positive lens, two in all; the second lens group consists of a negative lens and a positive lens, two in all; the third lens group consists of one positive lens; and the fourth lens group consists of a negative lens and a positive lens, two in all. In either case, each of the second to fourth lens groups has one aspherical surface to reduce the number of lenses.
With reference here to the zoom lens system set forth in JP-A 6-94997, however, it is impossible to make the first lens group thin because the first lens group having the largest lens diameter is made up of three lenses. This in turn makes it difficult to achieve a further reduction in the lens diameter, because the height of a ray having the largest field angle and passing through the first lens group cannot be lowered. With reference then to the zoom lens system disclosed in JP-A 6-194572, the assistance of the third lens group in zooming is insufficient because the third lens group is made up of one positive lens alone. This in turn causes the burden of the zooming action on the first and second lens groups to become large, making sufficient size reductions difficult. Further, spherical aberrations, coma, astigmatism, etc. produced at the third lens group are likely to become large and, accordingly, fluctuations in various aberrations due to the zooming movement of the third lens group are likely to become large. Furthermore, the force of the third lens group to converge an axial bundle becomes weak and so an axial bundle incident on the fourth lens group becomes relatively close to a parallel bundle. This in turn causes coma and astigmatism produced at the fourth lens group to become large.
In the zoom lens systems set forth in JP-A's 6-94997 and 6-194572, a great part of the zooming action is shared by the second lens group. To keep an image point substantially constant in this case, the lateral magnification of the second lens group must be in the range of about −1 from the wide-angle end to the telephoto end. At a zoom ratio lower than that, however, the amount of movement of the second lens group can become so small that size reductions can be achieved. It is thus efficient to reduce the space allowed between the first and second lens groups as much as possible for the purpose of size reductions.
To permit the second lens group to have a lateral magnification of about −1 while the space between the first and second lens groups is kept as narrow as possible, however, it is required to increase the power of the first lens group with respect to the second lens group. This then causes an entrance pupil to be located at a farther position where the height of an off-axis ray passing through the first lens group increases, resulting in an increase in the size of the lens system in the first lens group and, hence, an increase in the thickness of the lenses in the first lens group. Further, the curvature of each lens in the first lens group must be increased to make sure of the edge thickness of each lens, resulting in a further increase in the thickness of each lens in the first lens group.
SUMMARY OF THE INVENTION
In view of the aforesaid problems associated with the prior art, an object of the present invention is to achieve further size and cost reductions of such zoom lens systems.
One particular object of the present invention is to provide a zoom lens system comprising four lens groups, wherein size reductions are achieved without increasing the power of the first lens group with respect to the second lens group while satisfactory zoom ratios are maintained.
Another particular object of the present invention is to use a reduced number of lenses thereby achieving a compact zoom lens best suited for use with digital cameras, etc. This zoom lens system is designed to achieve a substantially telecentric emergent bundle while taking an image pickup element such as a CCD into consideration, and obtain such a back focus as to allow optical elements such as low-pass filters and bundle-splitting elements to be located in the system, if required. In addition, the capability of the zoom lens system to form images is considerably improved.
According to the first aspect of the present invention, the aforesaid objects are achieved by the provision of a zoom lens system comprising, in order from an object side thereof, a first lens group that has positive refracting power, a second lens group that has negative refracting power and moves from the object side to an image plane side of the system during zooming from a wide-angle end to a telephoto end of the system, a third lens group that has positive refracting power and a fourth lens group that has positive refracting power and is movable during zooming, wherein:
said first lens group comprises two lenses, a negative lens and a positive lens or one positive lens alone,
said third lens group comprises three lenses, a positive lens, a positive lens and a negative lens or two lenses, a positive lens and a negative lens, and
said third lens group has at least one aspherical surface therein.
Preferably in this case, the positive and negative lenses in the third lens group are cemented together.
Preferably, the third lens group moves from the image plane side to the object side during zooming from the wide-angle end to the telephoto end.
Preferably, the first lens group remains fixed during zooming.
Preferably, the second lens group comprises two lenses, a negative lens and a positive lens in order from the object side.
Preferably, the fourth lens group comprises one positive lens alone.
Preferably, the zoom lens system satisfies the following condition (a):
0.3<|L
3
|/|L
2
|<1.0  (a)
where L
2
is an amount of movement of the second lens group from the wide-angle end to the telephoto end, and L
3
is an amount of movement of the third lens group from the wide-angle end to the telephoto end.
Preferably, the second lens group has at least one aspherical surface therein.
Preferably, the four

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zoom lens system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zoom lens system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zoom lens system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2605055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.