Illumination – Supported by vehicle structure – Light modifier
Reexamination Certificate
1998-04-20
2001-02-27
Husar, Stephen (Department: 2875)
Illumination
Supported by vehicle structure
Light modifier
C362S101000, C362S488000, C362S562000
Reexamination Certificate
active
06193399
ABSTRACT:
BACKGROUND
The invention relates to distributed lighting systems.
Distributed lighting systems distribute light from one or more light sources in central locations to one or more remote locations. A distributed lighting system promises several advantages over conventional lighting techniques, including low power consumption, extended life, heat reduction where the light is emitted, and increased design flexibility.
SUMMARY
The invention provides a distributed lighting system (DLS) for use, for example, in an automobile. Issues associated with incorporating a distributed lighting system into an automobile are discussed by Hulse, Lane, and Woodward in “Three Specific Design Issues Associated with Automotive Distributed Lighting Systems: Size, Efficiency and Reliability,” SAE Technical Paper Series, Paper No. 960492, which was presented at the SAE International Congress and Exposition, Detroit, Mich., Feb. 26-29, 1996 and Hulse and Mullican in “Analysis of Waveguide Geometries at Bends and Branches for the Directing of Light,” SAE Technical Paper Series, Paper No. 981189, which are incorporated herein by reference.
A practical distributed lighting system for an automobile must address size, efficiency, and reliability issues. To this end, an implementation of the invention employs focus-less optics components, such as collector elements and waveguides. These components are inexpensive to manufacture, since they can be formed from plastic (acrylic, for example) in an injection molding process. In addition, they have high collecting efficiency and are very compact. For example, a collector element may be smaller than one cubic inch (16.4 cubic centimeters). Components that must handle high heat levels (e.g., components are placed in proximity to the light source) may require a ventilation system or may include portions formed from heat resistant materials, such as glass or Pyrex™.
The DLS may incorporate different types of optical waveguide structures to distribute light throughout the vehicle, including joints, elements with epoxy coatings, pinched end collector portions, integrated installation snaps, integrated input optics and integrated output lenses. The DLS may also include waveguide structures to provide illumination to portions of the vehicle interior, including cup holders, assist grips, and storage pockets.
In one aspect, generally, an optical waveguide for illuminating the interior of a cup holder in a vehicle is formed from a piece of solid material. The solid material has a ring portion that is sized and shaped to be received within a cup holder and that releases light into the cup holder. An input face receives light from a light source. An input portion extends between the input face and the ring portion, confines light through internal reflection, and directs light from the input face to the ring portion.
Embodiments may include one or more of the following features. The ring portion may define an inner circumference and may release light around the inner circumference. The ring portion may have a protruding angled portion around the inner circumference that directs light down toward a bottom portion of the cup holder. The upper surface of the angled portion may be stippled. An upper surface of the angled portion may be covered with an opaque material. The ratio of an inner radius of the ring portion to the width of the ring portion may be greater than or equal to 3:1.
The ring portion may include a first arm and a second arm that define a gap in the inner circumference. The second arm may have a smaller cross-section and a smaller length than the first arm. The ring portion may have a web portion that extends between the first and second arms. The web portion may release light along its edge. The ring portion may include a tab that extends from the inner circumference between the first and second arms. The tab may have a rectangular cross-section and may curve toward the bottom of the cup holder. The tab may have a chamfered leading edge.
The optical waveguide described above may be included in an illuminated cup holder having a bottom surface. A side wall may extend from the bottom surface and define a volume shaped and sized to receive a cup. A rim may be positioned around the upper edge of the side wall.
In another aspect, an optical waveguide illuminates the inside of an assist grip in a vehicle. The waveguide is a piece of solid material having an illumination portion with an inner surface and an outer surface. The illumination portion is sized and shaped to be received within a channel along the length of the assist grip and releases light from the inner surface. An input face at one end of the illumination portion receives light from a light source.
Embodiments may include one or more of the following features. The inner surface may be stippled. The ratio of the inner radius of a bend to the width of the waveguide may be greater than or equal to 3:1. The waveguide may have snaps extending from the outer surface that hold the illumination portion in place within the channel. A lens positioned adjacent to the light source may focus light from the light source to form a courtesy light. An illuminated assist grip for a vehicle including the waveguide described above also may have a handle portion formed of solid material, a channel formed along the length of the handle and a light source receptacle configured to receive a light source.
In another aspect, an optical waveguide for a vehicle door illuminates an area beneath the vehicle. The door has a bottom surface that meets a floor surface of the vehicle when the door is closed. The waveguide includes a door portion positioned inside the door and extending to the bottom surface of the door. A floor portion extends from the floor surface to the underside surface of the vehicle. The door portion and the floor portion meet when the door is closed so that light may pass through the door portion and the floor portion to illuminate the area beneath the vehicle. Embodiments may include a branch that extends from the door portion to an interior surface of the door to illuminate the interior of the vehicle.
In another aspect, an illuminated storage pocket for a vehicle has a surface that defines a storage volume and a rim around an edge of the surface. A waveguide formed from a piece of solid material has an illumination portion that has an inner surface and an outer surface. The illumination portion is received within a channel along the rim of the storage pocket and releases light from the inner surface. An input face at one end of the illumination portion receives light from a light source.
Embodiments may include one or more of the following features. The inner surface of the waveguide may be stippled. The waveguide may include snaps that extend from the outer surface and hold the illumination portion in place within the channel.
In another aspect, an optical waveguide includes a first and a second piece of solid material. The first piece has a transmission portion with a rectangular cross-section. The end of the transmission portion is convex in one dimension. The second piece has a transmission portion with a rectangular cross-section. The end of the transmission portion is concave in one dimension. The end of the first piece and the end of the second piece form an interface between the first and second pieces.
Embodiments may include one or more of the following features. The waveguide may include a third piece of solid material having a transmission portion with a rectangular cross-section. The end of the transmission portion may be concave in one dimension. The end of the third piece and the end of the first piece may form an interface between the first and third pieces. A band may hold the first, second and third pieces together.
The waveguide may include a third piece of solid material having a transmission portion with a rectangular cross-section. The end of the transmission portion may be convex in one dimension. The end of the third piece and the end of the second piece form an interface between the secon
Cooper Automotive Products, Inc.
Husar Stephen
Reising Ethington, Barnes, Kisselle, Learman & McCulloch, P.C.
LandOfFree
Optical waveguide structures for vehicle lighting does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical waveguide structures for vehicle lighting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical waveguide structures for vehicle lighting will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604648