Diagnostic assay system and method

Chemistry: analytical and immunological testing – Automated chemical analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S164000, C436S165000, C422S082050, C422S068100, C422S063000, C422S050000, C422S051000, C422S091000, C422S119000

Reexamination Certificate

active

06184040

ABSTRACT:

BACKGROUND
The present invention relates generally to diagnostic assay systems and methods and, in particular, to hand-held diagnostic assay systems and methods for conducting signal generating activities and recording the same on image recording material.
Detecting the presence or absence of generated signals, such as of the luminescent and fluorescent type as a means of indicating the presence or absence of certain biological and/or chemical activities is well-known. Examples of these approaches include use of single-sample luminometers fitted with photographic multipliers; single-sample luminometers fitted solid-state detectors; multiple sample luminometers; automatic luminometers with imaging systems based on CCD cameras; and photographic camera type luminometers for recording luminescent activity on conventional and self-developing film. Heretofore, many of the above noted approaches are rather expensive and difficult to use due to their complicated construction including utilization of electronics as well as the requirements of an associated source of power. Further examples of known approaches in this field include those described generally in U.S. Pat. Nos. 4,863,689, and 5,035,866.
Despite the existence of a wide variety of known diagnostic testing systems and approaches, however, it is, nevertheless, desired to improve upon the overall ease, versatility, and reliability of such systems and their testing procedures, as well as reduce overall costs associated with their construction and use.
SUMMARY OF THE INVENTION
In accordance with the present invention, provision is made for a diagnostic assay system operable for conducting assay operations and recording signals generated therefrom on a film assemblage. Included in the system is a processor comprising a hand-held housing assembly having at least one fluid access port and a film assemblage having its image recording area retained within a light-tight compartment therein. The film assemblage is removable therefrom through an exit in the housing. Preferably, the film is of the self-developing type and its image recording area is positionable at an exposure station within the housing assembly. A sample carrier assembly is movable within the housing assembly between a fluid accessing position and an exposing position. The carrier assembly carries at a least fluid reservoir assembly for use in conjunction with a diagnostic test element. When the sample carrier is in its fluid accessing position, a sample test fluid perhaps containing an analyte of interest can be introduced through the access port and into the reservoir assembly wherein it is selectively retained. Triggering devices in the housing upon movement of the sample carrier triggers flow of the fluid from the reservoir to the test strip, thereby commencing a signal generating activity if the analyte of interest is present. This movement results in the test strip being at the exposing position over an aperture in registry with the image recording area, whereby the generated signal exposes the film.
In an illustrated embodiment, provision is made for a fluid reservoir assembly having at least one opening for forming a meniscus for holding the fluid and then allowing release of the fluid in response to a triggering action effected upon movement of the sample carrier assembly to the exposing position.
In an illustrated embodiment, provision is made for a sample carrier assembly that holds the fluid reservoir assembly and is in operative relationship to an associated assay element, whereby a triggering assembly in the housing assembly effects release of the fluid retained in the reservoir to the assay element while the carrier assembly moves from first to second positions, thereby commencing a signal generating event if the fluid contains an analyte of interest.
In another illustrated embodiment, the sample carrier uncovers an exposure aperture in the housing assembly while the carrier assembly is advanced to the second position.
In an illustrated embodiment, provision is made for use of a film assemblage of the self-developing type wherein at least a single film unit is withdrawn from the housing assembly past film processing means located in the housing assembly so that the hand-held system is otherwise disposable.
In another illustrated embodiment, provision is made for a second fluid reservoir assembly and corresponding triggering means for triggering the release of a control fluid introduced and retained in the second reservoir to an associated assay strip in response to the sample carrier moving to the exposing position; whereby a luminescent reaction of an analyte of interest exposes the film.
The present invention contemplates a method of conducting a diagnostic assay of a test fluid and recording the results thereof by recording signals capable of exposing an image recording material if the test fluid contains an analyte of interest. The image recording material is, preferably, of the self-developing type. Included in such a method are the steps of: providing at least one self-developing film strip; providing a processor including a hand-held housing assembly having at least a fluid access port allowing introduction of the test fluid to a fluid reservoir assembly therefor and an associated diagnostic element in operative relationship thereto; housing the film assemblage within a light-tight compartment of the housing assembly so that an exposure aperture therein allows exposure of the film assemblage; carrying the fluid reservoir and diagnostic element in the housing from a first position to a second position; triggering the reservoir during such carrying step to release the retained fluid to the diagnostic element whereby if the fluid contains an analyte of interest a signal recordable on the film is generated; exposing the film assemblage through the exposure aperture when the diagnostic element is at the second position. In another illustrated embodiment, the method further includes the step of processing the exposed film as the latter is withdrawn from the housing assembly.
In another illustrated embodiment, the step of carrying the fluid reservoir assembly and the diagnostic element is carried out by a sample carrier assembly which in the first position covers the exposure aperture and allows introduction of test fluid to the reservoir; and, in the second position uncovers the exposure aperture.
In another illustrated embodiment of the last noted type, provision is made for triggering release of the fluid from the reservoir in response to movement of the carrier assembly from the first to the second positions.
Another embodiment defines a diagnostic testing method which includes the step of: introducing a test fluid into a reservoir; retaining the test fluid therein by reason of surface tension; triggering the release of the fluid from the reservoir onto a diagnostic element in adjacent relationship thereto by causing the retained fluid to contact a diagnostic element and/or applying force to the reservoir and/or the test fluid which is sufficient to overcome the surface tension, the fluid is released onto the diagnostic element, whereby if released fluid contains an analyte of interest a signal is generated that is capable of exposing the film; and, exposing the film to the generated signal.
In another illustrated embodiment, the latent image of the generated signal is processed by passing the film in operative relationship to a film processing means in the housing as the film is withdrawn from the housing.
It is an object of the present invention to provide an improved method and system for conducting and recording luminescent reactions, wherein the results are instantly and reliably recorded by an operator.
It is another object of the present invention to provide an improved method and system for conducting and recording luminescent reactions in a hand-held assay processor using self-developing type film.
It is another object of the present invention to provide an improved method and system for conducting and recording luminescent reactions in a han

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic assay system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic assay system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic assay system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604310

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.