Implantable connector

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S038000, C439S909000

Reexamination Certificate

active

06321126

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to implantable electronic and electrochemical medical devices and systems, and more particularly to a miniature implantable connector used with such devices and systems. Such connector is reliable, easy to manufacture, and provides multi-contact connections for use with limited-sized implantable stimulators, sensors, and the like.
Implantable electronic medical devices and systems have been in use for at least the past 20 years or more. One of the earliest implantable medical devices to be implanted in a patient was the cardiac pacemaker. Other implantable electronic devices have included neurostimulators, i.e., electrical stimulators designed to stimulate nerves or other tissue, sensors for sensing various physiological parameters or physical status of a patient, and other therapeutic-delivery devices, e.g., pumps for delivering controlled amounts of medication. In more recent years, the tiny implantable cochlear stimulator has been developed to allow patients who are profoundly deaf the ability to experience the sensation of hearing. Under development are other tiny implantable sensors and neurostimulators that will allow a patient who is a recipient of such sensors or stimulators the ability to walk, or to see, or to experience the use of other lost or impaired body functions.
Many of the implantable medical devices and systems described above require that at least one electrical lead be connected thereto in order for the device or system to perform its intended function. Such lead may terminate, e.g., in one or more electrodes designed to be in contact with body tissue. The cochlear stimulator, for example, has an electrode array adapted for insertion into the cochlea of the patient. Such electrode array typically employs a multiplicity of electrode contacts, e.g., 16-32 electrode contacts, each of which must be individually electrically connected to the electronic stimulation circuitry housed within an implantable housing. Other implantable electronic medical devices must be connected to a power source, or another sensor or other device, which requires an electrical lead, typically with at least two electrical conductors therein, for making the needed electrical connection between the devices or components of the system.
As the electronic medical devices and systems implanted in patients have become smaller and smaller, there has arisen a critical need for a reliable, easy-to-manufacture connector that allows a multi-conductor electrical lead to be detachably and reliably connected to the electronic circuitry hermetically sealed within a limited-sized implantable housing.
SUMMARY OF THE INVENTION
The present invention addresses the above and other needs by providing an easy-to-manufacture electrical connector formed in the housing of a limited-sized electronic device, e.g., an implantable neurostimulator, such as a cochlear implant, a pain-control device, pacemaker, or the like, that allows a multi-conductor electrical lead to be easily and reliably connected thereto. Advantageously, the invention herein described offers a simple, effective and small-dimensioned connector that facilitates a large number of separate electrical connections.
The connector of the invention includes a header, a connector pad and a compression spring. The header is made from a hard polymer, such as epoxy, and is typically formed on one side, or one segment, of the implantable case wherein the electronic circuitry associated with the implantable medical device is housed.
The header has a cavity with a flat bottom formed therein. An array of contacts are molded into the header so as to be flush with the bottom surface of the cavity. Each of the contacts are connected by wiring or other equivalent components, e.g., conductive traces, to hermetic feedthroughs that provide an electrical connection into the hermetically sealed chamber inside of the housing. In this manner, each of the contacts may thus be electrically connected to the electronic circuitry housed within the hermetically-sealed chamber.
The header also has two locking indentations, and a channel formed in the side walls that surround the cavity. The locking indentations are used to lock the compression spring against the connector pad when the connector pad is inserted into the cavity. The channel provides an exit opening through which a multi-conductor lead attached to the connector pad may exit when the connector pad is locked into the cavity. At an opposite end of cavity from the channel, a niche is formed for receiving one end of the compression spring. This niche securely holds one end of the compression spring while the other end is forced down over the connector pad and locked into place with the aid of the locking indentations.
The connector pad is molded from a silicone polymer into a flat paddle shape so as to have the same dimensions as the cavity of the header, thereby enabling the connector pad to be removably inserted, with a snug fit, within the cavity. An array of electrical contacts is formed on a bottom surface of the connector pad. This array of contacts matches with the array of contacts formed in the bottom of the cavity so that when the pad is inserted into the cavity, each contact of the connector pad may make electrical contact with at least one contact of the array of contacts formed in the bottom of the cavity. The contacts formed in the connector pad are electrically connected to conductors within a lead, which lead exists from a side of the connector pad at one end of thereof.
The compression spring is preferably made from a springy and biocompatible metal, such as Titanium Alloy 6AL-4V. It is permanently shaped to a radius R so that, unlocked, one end tends to lift or pull away from the connector pad while the other end remains engaged in the niche at one end of the header. The end of the spring the niche end has a locking bracket formed into a U-shape and is equipped with locking teeth that are adapted to engage the locking indentations formed in the sides of the connector header.
The connector is assembled by first placing the connector pad within the cavity of the header so that its contacts physically contact the header contacts formed in the array at the bottom of the cavity and so that the lead resides in the channel formed in the side of the header. One end of the compression spring is then inserted into the header niche, while the other end of the compression spring is pushed down until the teeth of the locking bracket engage and lock with the locking indentations formed in the side of the header. Once thus locked, a uniform compression force is applied to the surface of the connector pad, thereby compressibly forcing the electrical contacts formed on the bottom side of the connector pad firmly against the contacts within the cavity of the header. Alternative locking mechanisms may also be used to secure one end of the spring to the header, e.g., a screw or equivalent fastening element.
The connector may be opened by using a metal tool, like a screwdriver, to disengage the locking teeth of the compression spring from the indentations formed in the side of the header.
In an alternative embodiment, the header and its cavity are curved so as to form one segment around the periphery of an otherwise round or circular-shaped implantable housing. In such instance, the connector pad is also curved so as to fit in the curved cavity. The compressive spring, for such embodiment, may be formed to be straight, and as it is forced to assume the same curvature as the connector pad, a uniform compressive force is applied against the connector pad to hold it firmly in place within the cavity.
It is thus one feature of the present invention to provide a limited-sized, implantable, multi-conductor connector that may be used to detachably secure a multi-conductor lead to an implantable medical device.
It is another feature of the invention to provide such a connector that is sufficiently small to be used with an implantable cochlear stimulator or other small-si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Implantable connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Implantable connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604288

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.