Methods for determining the identification and position of...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S046000, C382S104000, C382S106000, C180S169000, C280S730100, C367S008000, C073S596000

Reexamination Certificate

active

06324453

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Prior Art on Out of Position Occupants and Rear Facing Child Seats
Whereas thousands of lives have been saved by airbags, a large number of people have also been injured, some seriously, by the deploying airbag, and over 100 people have now been killed. Thus, significant improvements need to be made to airbag systems. As discussed in detail in U.S. Pat. No. 5,653,462 referenced above, for a variety of reasons vehicle occupants may be too close to the airbag before it deploys and can be seriously injured or killed as a result of the deployment thereof. Also, a child in a rear facing child seat that is placed on the right front passenger seat is in danger of being seriously injured if the passenger airbag, deploys. For these reasons and, as first publicly disclosed in Breed, D. S. “How Airbags Work” presented at the International Conference on Seatbelts and Airbags in 1993, in Canada, occupant position sensing and rear facing child seat detection systems are required.
Initially, these systems will solve the out-of-position occupant and the rear facing child seat problems related to current airbag systems and prevent unneeded airbag deployments when a front seat is unoccupied. However, airbags are now under development to protect rear seat occupants in vehicle crashes and all occupants in side impacts. A system will therefore be needed to detect the presence of occupants, determine if they are out-of-position and to identify the presence of a rear facing child seat in the rear seat. Future automobiles are expected to have eight or more airbags as protection is sought for rear seat occupants and from side impacts. In addition to eliminating the disturbance and possible harm of unnecessary airbag deployments, the cost of replacing these airbags will be excessive if they all deploy in an accident needlessly.
Inflators now exist which will adjust the amount of gas flowing to the airbag to account for the size and position of the occupant and for the severity of the accident. The vehicle identification and monitoring system (VIMS) discussed in U.S. Pat. No. 5,829,782 will control such inflators based on the presence and position of vehicle occupants or of a rear facing child seat. As discussed more fully below, the instant invention is an improvement on that VIMS system and uses an advanced optical system comprising one or more CCD (charge coupled device) or CMOS arrays and particularly active pixel arrays plus a source of illumination preferably combined with a trained neural network pattern recognition system.
Others have observed the need for an occupant out-of-position sensor and several methods have been disclosed in U.S. patents for determining the position of an occupant of a motor vehicle. Each of these systems, however, has significant limitations. For example, in White et al. (U.S. Pat. No. 5,071,160), a single acoustic sensor and detector is described and, as illustrated, is mounted lower than the steering wheel. White et al. correctly perceive that such a sensor could be defeated, and the airbag falsely deployed, by an occupant adjusting the control knobs on the radio and thus they suggest the use of a plurality of such sensors.
Mattes et al. (U.S. Pat. No. 5,118,134) describe a variety of methods of measuring the change in position of an occupant including ultrasonic, active or passive infrared and microwave radar sensors, and an electric eye. The sensors measure the change in position of an occupant during a crash and use that information to access the severity of the crash and thereby decide whether or not to deploy the airbag. They are thus using the occupant motion as a crash sensor. No mention is made of determining the out-of-position status of the occupant or of any of the other features of occupant monitoring as disclosed in one or more of the above cross-referenced patents and patent applications. It is interesting to note that nowhere does Mattes et al. discuss how to use active or passive infrared to determine the position of the occupant. As pointed out in one or more of the above cross-referenced patents and patent applications, direct occupant position measurement based on passive infrared is probably not possible and, until very recently, was very difficult and expensive with active infrared requiring the modulation of an expensive GaAs infrared laser. Since there is no mention of these problems, the method of use contemplated by Mattes et al. must be similar to the electric eye concept where position is measured indirectly as the occupant passes by a plurality of longitudinally spaced-apart sensors.
The object of an occupant out-of-position sensor is to determine the location of the head and/or chest of the vehicle occupant relative to the airbag since it is the impact of either the head or chest with the deploying airbag which can result in serious injuries. Both White et al. and Mattes et al. describe only lower mounting locations of their sensors in front of the occupant such as on the dashboard or below the steering wheel. Both such mounting locations are particularly prone to detection errors due to positioning of the occupant's hands, arms and legs. This would require at least three, and preferably more, such sensors and detectors and an appropriate logic circuitry which ignores readings from some sensors if such readings are inconsistent with others, for the case, for example, where the driver's anns are the closest objects to two of the sensors.
White et al. also describe the use of error correction circuitry, without defining or illustrating the circuitry, to differentiate between the velocity of one of the occupant's hands as in the case where he/she is adjusting the knob on the radio and the remainder of the occupant. Three ultrasonic sensors of the type disclosed by White et al. might, in some cases, accomplish this differentiation if two of them indicated that the occupant was not moving while the third was indicating that he or she was. Such a combination, however, would not differentiate between an occupant with both hands and arms in the path of the ultrasonic transmitter at such a location that they were blocking a substantial view of the occupant's head or chest. Since the sizes and driving positions of occupants are extremely varied, it is now believed that pattern recognition systems and preferably trained pattern recognition systems, such as neural networks, are required when a clear view of the occupant, unimpeded by his/her extremities, camiot be guaranteed.
Fujita et al., in U.S. Pat. No. 5,074,583, describe another method of determining the position of the occupant but do not use this information to suppress deployment if the occupant is out-of-position. In fact, the closer the occupant gets to the airbag, the faster the inflation rate of the airbag is according to the Fujita et al. patent, which thereby increases the possibility of injuring the occupant. Fujita et al. do not measure the occupant directly but instead determine his or her position indirectly from measurements of the seat position and the vertical size of the occupant relative to the seat (occupant height). This occupant height is determined using an ultrasonic displacement sensor mounted directly above the occupant's head.
As discussed above, the optical systems described herein are also applicable for many other sensing applications both inside and outside of the vehicle compartment such as for sensing crashes before they occur as described in U.S. patent application Ser. No. 08/239,978 cross-referenced above, for a smart headlight adjustment system and for a blind spot monitor.
2. Definitions
The use of pattern recognition is central to the instant invention as well as to one or more of those disclosed in the cross-referenced patents and patent applications above. “Pattern recognition” as used herein will generally mean any system which processes a signal that is generated by an object, or is modified by interacting with an object, in order to determine which one of a set of classes that the object belongs t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for determining the identification and position of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for determining the identification and position of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for determining the identification and position of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2593874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.