Dual stage pump system with pre-stressed diaphragms and...

Liquid purification or separation – Processes – Including controlling process in response to a sensed condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S110000, C210S258000, C210S767000, C417S036000, C417S313000, C222S255000

Reexamination Certificate

active

06190565

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a pumping, filtering and reservoir system for use in dispensing precise amounts of viscous liquids at precise rates. More particularly, the present invention relates to an improved dual stage pumping system with in-line filter and reservoir systems disposed between the two pumps connected in series and further with improved pump accuracy due to pre-formed pump diaphragms.
BACKGROUND OF THE INVENTION
The manufacture of multi-chip modules (MCM), high-density interconnect (HDI) components and other semiconductor materials requires the application of a thin layer of polyamide material as an inner layer dielectric. The polyamide material must be filtered and then applied with exacting precision because the required thicknesses of the polyamide film may be as small as 100 microns and the final thickness of the polyamide film must be uniform and not normally vary more than 2% across the substrate or wafer.
In this connection, numerous problems arise with the construction and operation of a pump/filter apparatus that will supply polyamide material in exacting amounts and in a timely manner.
In addition to the unique mechanical and electrical properties that make polyamides ideally suited for use in the manufacture of semiconductors, polyamides also have physical properties that make it difficult to pump or supply the polyamides in exacting amounts. Specifically, polyamides are viscous; most polyamides used in the manufacture of semiconductors have viscosities in excess of 400 poise. Fluids with viscosities this high are difficult to pump and difficult to filter. Pumping a viscous fluid through a submicron filter can create high back pressures at the filter element.
Further, the viscosity of polyamide fluids can vary with time and temperature. Essentially, polyamide fluids must be date coded and viscosity measurements are valid for only relatively short periods of time, perhaps 10 days. It is known in the art that recirculation of polyamide fluids helps stabilize the viscosity. However, because polyamide fluids are viscous and the viscosity of the polyamide fluids is dependent on temperature, excessive recirculation may increase the temperature of the fluid and thereby alter the viscosity. Of course, changes in the fluid viscosity will affect the operation and performance of pumps used to dispense the fluid.
Pumps used in dispensing polyamide fluids must also be precise because of the high cost of the fluids. It is not uncommon for polyamide fluids to cost in excess of $15,000 per gallon. Therefore, it is important that pump systems used to dispense the polyamide fluids dispense the exact amounts, without waste.
At least three techniques are used for applying polyamide films to substrates during the manufacture of semiconductors. Those methods include applying a drop of polyamide material to the center of a substrate wafer following by rotation of the wafer to evenly distribute the polyamide across the wafer. However, in this system, a substantial amount of polyamide liquid is spun from the wafer and then discarded, resulting in loss of the expensive polyamide liquid. A second method includes the deposit of polyamide liquid on a rotating wafer. In this method, the dispense rate and amount must be tightly controlled so that the dispense pattern is consistent from one wafer to the next.
A third and more recent method is known as liquid extrusion. In this method, an exacting amount of polyamide liquid is applied to the wafer in a single pass. It is anticipated that liquid extrusion systems or similar methods will eventually replace the aforenoted methods that include rotation of the wafers.
The polyamide liquids are dispensed with pumps such as the ones shown in U.S. Pat. Nos. 5,167,837 and 4,950,134. The present invention provides a substantial contribution to the art of precision fluid pumping and to the designs disclosed in U.S. Pat. Nos. 5,167,837 and 4,950,134 by providing a reservoir disposed between the two pumps and further by providing an improved control system and recirculation system. Additionally, the diaphragm pumps disclosed in both U.S. Pat. Nos. 5,167,837 and 4,950,134 are prone to inaccuracies due to stretching of the diaphragm during operation of the pumps.
During the dispense and reload strokes of a diaphragm pump, pressure is exerted on the diaphragm causing the diaphragm to stretch. At the end of the dispense or reload stroke, some residual resilience exists in the rubber material comprising the diaphragm. This residual resilience can cause unwanted forces to be exerted on the fluid in the system. These forces cause small displacements of fluid leading to pump inaccuracies. The present invention provides a solution to this problem by pre-stressing the pump diaphragm to its maximum size during manufacture of the diaphragms, thereby reducing or eliminating residual resilience in the diaphragm.
Thus, the present invention is directed to improved dual-stage pumps systems for the precise dispensing of polyamide fluids and other viscous fluids that includes a separate reservoir disposed between the two pump units, a recirculation system and pre-formed pump diaphragms for enhanced pump accuracy.
SUMMARY OF THE INVENTION
The dual stage pump system of the present invention includes a first pump for receiving and dispensing fluid from a fluid source or source bottle. The first pump, or first pumping means, pumps the fluid through a filter, or filtering means. After the fluid is filtered, the pressure exerted by the first pump causes it to travel through a conduit and into a reservoir, or reservoir means. The reservoir acts as a source bottle for the second pump, or second pumping means. The second pump draws fluid from the reservoir and dispenses it in precise amounts.
Three separate three-way solenoid valves are employed in the preferred embodiment of the present invention. A first three-way solenoid valve is disposed between the first pump, the source bottle and the filter. The valve allows communication between the source bottle and first pump and, alternatively, the first pump and the filter. A second three-way solenoid valve is disposed between the reservoir, the second pump and the recirculation/dispensing system. A third ree-way solenoid valve is disposed between the second pump, the dispense nozzle and the recirculation conduit. This valve allows communication between the second pump and the dispense nozzle and, alternatively, the second pump and the recirculation conduit.
If the application of submicron filtration to high viscosity fluids is slower than the amount of fluid required by the dispensing pump, i.e. the second pumping, the viscous fluid cannot be filtered at a rate equal to the dispense rate. The present invention solves this problem by providing a first pump which operates at a rate independent of the second pump. The first pump forces fluid from the source bottle through the submicron filter and into the reservoir, which acts as a source bottle for the second pump. Further, by having filtered fluid contained in the reservoir for use by the second pump, the first pump can operate at a slow rate thereby avoiding the creation of substantial back pressure at the filter. While the filter size and fluid viscosity are important factors in the creation of back pressure, the filtration rate, or the first pumping rate of the first pump may be slow enough so as to avoid this occurrence.
A controller means along with pressure sensing means disposed in the first pump and the second pump control the amount of fluid that is maintained in the reservoir. The controller stores input values for filtration rate and filter size. The operator must program a first pumping rate for the first pump that is compatible with the filter size and fluid viscosity. The operator also chooses a required second pumping rate or required dispense rate. If the second pump is not dispensing and the fluid level in the reservoir is low, then the controller either continues or initiates operation of the first pump. If the second pump is o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual stage pump system with pre-stressed diaphragms and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual stage pump system with pre-stressed diaphragms and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual stage pump system with pre-stressed diaphragms and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592861

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.