Method of making formed bodies

Metal working – Method of mechanical manufacture – Process for making bearing or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06330748

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of making formed bodies from iron alloys, in particular for making cages for radial roller bearings, axial roller bearings or linear roller bearings.
Steel cages for roller bearings are manufactured on an industrial scale in various fashions. Examples include drawing, punching or bending steel sheet or also steel pipe, as described e.g. in German publications DE-OS 21 47 169 or 21 47 171. For realizing cages to withstand particularly high loads, the strength and wear-resistance of cages can be further improved through additional heat treatment or thermochemical treatment, such as casehardening or nitriding, as disclosed e.g. in German publication DE-OS 25 56 745.
It is also known to manufacture cages for radial bearings from a strip material by punching slots into the strip for formation of pockets that receive rolling elements, subsequently bending the strip into a round configuration, and optionally fusing adjacent ends of the strip, as disclosed e.g. in French Pat. No. 1,256,601 or U.S. Pat. No. 2,288,564. This type of manufacturing process based on a bent strip is also applicable for axial bearings, as described e.g. in German Pat. No. DE 21 46 056 C3.
U.S. Pat. No. 3,173,192 describes a process for manufacturing cages for a cylindrical roller bearing by initially forming a strip of non-hardened low carbon steel into a desired profiled configuration and subsequently punching a plurality of spaced slots into the metal strip to form pockets for receiving rolling elements. Thereafter, the thus prepared metal strip is bent into a round configuration to form a cage which then is exposed to a heat treatment for purposes of obtaining improved mechanical properties with respect to hardness, strength and wear resistance. The sequence of this process is selected in this manner because it allows application of only low forces for realizing the shaping and punching steps in view of the untreated metal strip.
The application of heat treatment or thermochemical treatment, in particular in conjunction with delicate cages, i.e. cages of slight wall thickness and web strength, results in a distortion of the shape and size, rendering in extreme cases such formed bodies useless. The distortion of the workpieces are caused during hardening by superimposition of a deformation caused by internal stress during heat treatment and the volumetric change during transformation.
SUMMARY OF THE INVENTION
It is thus an object of the present invention to provide an improved method of making formed bodies, obviating the afore-stated drawbacks.
In particular, it is an object of the present invention to provide an improved method for making formed bodies, which eliminates any distortion thereof and improves their properties despite application of a heat treatment.
These objects, and others which will become apparent hereinafter, are attained in accordance with the present invention by treating a metal strip through heat treatment or thermochemical treatment before punching a plurality of spaced slits into the metal strip for formation of pockets to receive rolling elements.
By subjecting the starting material, i.e. the metal strip, to a heat treatment or thermochemical treatment before carrying out the punching step, changes in shape or size of the material are taken into account before the actual shaping step is carried out. Thus, deformations caused by internal stress and the volumetric change during transformation have already occurred before the formed bodies are shaped into their final configuration.
It is to be understood that the term “heat treatment” as used in the description will denote any treatment involving the heating and cooling of a metal or alloy in the solid state for the purpose of improving certain desirable conditions and properties, without intended changes of the chemical composition, while the term “thermochemcial treatment” refers to any process by which the chemical composition and the structure, preferable in the outer surface of steel parts, are modified through thermal and chemical influence for the purpose of obtaining certain desirable properties of the formed bodies.
According to another feature of the present invention, the metal strip is bent into a round shape after the punching step, and subsequently, adjacent ends of the metal strip are fused together to provide the final configuration. Advantageously, in view of the predetermined hardenability, the weld seam does not experience any martensite formation so that no martensitic flash is encountered which could abrade components of the roller bearing such as tracks or races.
As a result of the momentary heat development during welding at a temperature below the AC
1
, temperature (“temperature at which austenite begins to be formed upon heating a steel”), the tempered strip texture is not exposed to a significant temper effect so that the transition area of the weld seam does not experience a softening that falls below the basic strength. Inherent stress as a result of welding are mostly compensated by the sufficient material toughness.
According to another feature of the present invention, the metal strip is casehardened or nitro-carburized. Casehardening normally involves annealing a steel with a low carbon content of 0.05 to 0.20% that is practically not hardenable, at an elevated temperature between 850° C. to 1,000° C. with a solid carburizing agent or with a gaseous carburizing agent or liquid carburizing agent. During casehardening, carbon diffuses to the outer layers of the workpiece involved here so as to obtain a composite type workpiece having a soft ductile core with low carbon content and an outer surface with high carbon content.
Nitro-carburizing like casehardening is a thermochemical process which involves introduction of nitrogen and carbon into the outer surface of steel parts for the purpose of obtaining certain desired properties such as hardness, strength and wear resistance.
Preferably, the metal strip is tempered after being rolled into the round configuration and fused at the adjacent ends, suitably at a temperature of about 180° C. at a retention time of about one hour, or at a temperature of about 350° C. at a retention time of about 5 seconds. Through tempering the deformed texture is stabilized to thereby augment the fatigue strength and to reduce inherent stress due to welding while yet eliminating the possibility of any changes in size or shape.


REFERENCES:
patent: 2933803 (1960-04-01), Schaeffler
patent: 3202467 (1965-08-01), Eckstein
patent: 3228090 (1966-01-01), Schaeffler
patent: 3256585 (1966-06-01), Ripple
patent: 3365775 (1968-01-01), Cavagnero et al.
patent: 3526026 (1970-09-01), Warchol
patent: 3699793 (1972-10-01), Wagner
patent: 3797083 (1974-03-01), Schaeffler et al.
patent: 3992764 (1976-11-01), Serasio
patent: 4212095 (1980-07-01), Warchol
patent: 4320565 (1982-03-01), Warchol
patent: 4881987 (1989-11-01), Kambara et al.
patent: 4888972 (1989-12-01), Rouse
patent: 5669992 (1997-09-01), Bronsema et al.
patent: 392166 (1965-09-01), None
patent: 1602557 (1970-01-01), None
patent: 3136013 (1983-04-01), None
patent: 2144808 (1985-03-01), None
patent: 48-7972 (1973-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making formed bodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making formed bodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making formed bodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.