Relative vehicle platform having synchronized adaptive...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S041000, C701S073000, C701S080000, C701S037000, C180S197000, C280S005507

Reexamination Certificate

active

06185485

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to control of automotive vehicle dynamics, and more particularly to improvements in processing data from certain on-board sensors, including a lateral accelerometer, a steering wheel position sensor, and a yaw rate sensor, for accomplishing robust control in the presence of certain input disturbances, such as those due to road surface banking.
2. Background Information
Certain motion sensors, such as steering wheel position sensors, yaw rate sensors, and lateral accelerometers (lateral acceleration sensors), provide useful inputs to an automotive vehicle dynamic control system. Such a control system utilizes a microprocessor that processes data, including input signal measurements received from such sensors, to cause adjustments in and/or actuations of a dynamic control system. The responses of such sensors can be sufficiently fast in relation to vehicle motion that their signal measurements can very closely track changing values of the respective measured parameters in real time. Accordingly, a microprocessor-based control system which receives such signal measurements as inputs can quickly process them to perform desired control action, such as performing a control function that strives to correct for rapidly changing vehicle dynamics via an appropriate system of the vehicle.
The electric signal measurements of such sensors may be subject to D.C. bias, or offset, which can influence measurement accuracy. Two identifiable and independent causes of such bias, or offset, in a lateral acceleration sensor are electrical drift and road bank angle disturbance. One technique previously proposed for compensating a system with respect to such bias, or offset, involves adjustment by long-term filtering/averaging of the signal measurement; another involves adjustment based on functional redundancy with other sensors using recent (short-term) measurements from those other sensors. The “long-term” filtering/averaging methodology is robust to dynamic vehicle maneuvers, but may have difficulty in promptly tracking D.C. electrical drift. The “short-term” methodology based on sensor functional redundancy may be better at tracking D.C. electrical drift, but may be overly sensitive to dynamic vehicle maneuvers.
The inventors of the present invention have realized that those two prior techniques do not distinguish times when the particular compensation that they provide should be made from times when it should not. Hence, when such known techniques are embodied in a vehicle dynamic control system, they may, at certain times, furnish a response, or lack thereof, that causes the system to respond, or not respond, in a manner other than what may be considered the most desirable, given the nature of events prompting the performance of such techniques.
When a vehicle is traveling along a road that is banked, for example because the road surface has a crown, the driver will steer the vehicle so as to inherently compensate for the road bank angle. Because of the presence of road banking, the driver is actually manipulating the steering wheel to positions slightly different from positions that he would in the absence of road banking, often without consciously realizing that he is doing so.
Because the steering angle sensed by a steering wheel angle sensor is uninfluenced by road banking, the electric signal measurement which it provides will exactly correlate with actual straightline travel of the vehicle at only one road bank angle. For example, if a particular signal measurement correlates to straightline vehicle travel when the road bank angle is zero, that specific signal measurement will depart from indicating straightline vehicle ravel when the vehicle is traveling along a banked road because the driver will have to readjust the steering angle to compensate for the road bank. The extent to which that specific steering angle signal measurement deviates from representing true straightline vehicle travel increases as the road bank angle increases.
In certain driving situations, for example when a vehicle is traveling at a banked angle due to the nature of an underlying road surface, each of an electric signal measurement of steering angle provided by a steering angle sensor and an electric signal measurement of vehicle lateral acceleration provided by a lateral accelerometer may have a respective adaptive offset that is different from the corresponding absolute offset. Absolute offset means the offset existing in the absence of any disturbances (both electrical and mechanical) to the sensor, and such absolute offset may in fact be zero in value. In the example of a vehicle traveling along a crowned road at a banked angle, the adaptive steering wheel center (offset) may be significantly different from its mechanical center while the adaptive offset in the signal measurement of a lateral accelerometer may be significantly different from its electrical D.C. offset.
SUMMARY OF THE INVENTION
The present invention arises, at least in part, through recognition of the respective beneficial characteristics of each of the above-mentioned “short-term” and “long-term” methodologies, and ensuing selective employment of such beneficial characteristics to the exclusion of other characteristics of those methodologies, in improving the robustness of a vehicle dynamic control system.
An advantage of the invention is that it can be embodied either entirely, or at least in large part, in an existing vehicle system without additional hardware. This is because the disclosed solutions provided by implementation of the invention are in the form of software in programmed into existing microprocessor-based systems. These solutions are especially desirable for mass-produced automotive vehicles because they accomplish new and useful functions in a cost-effective manner.
One generic aspect of the invention relates to a method of enhancing dynamic control system robustness in an automotive vehicle comprising: compensating a steering angle signal from a steering angle sensor to provide a compensated steering angle signal measurement; compensating a lateral acceleration signal from a lateral acceleration sensor to provide a compensated lateral acceleration signal measurement; compensating a yaw rate signal from a yaw rate sensor to provide a compensated yaw rate signal measurement; processing the compensated yaw rate signal measurement and the compensated lateral acceleration signal measurement to derive a signal measurement of road bank angle disturbance not compensated for in the compensated steering angle signal; providing the compensated steering angle signal measurement and the signal measurement of road bank angle disturbance not compensated for in the compensated steering angle signal to adjust the control action of the vehicle dynamic control system.
Another generic aspect of the invention relates to an automotive vehicle comprising a dynamic control system for controlling at least one characteristic of vehicle dynamics, the control system comprising: a steering angle sensor providing a steering angle signal measurement; a first calibration filter for calibrating the steering angle signal measurement to a compensated steering angle signal measurement; a lateral acceleration sensor providing a lateral acceleration signal; a second calibration filter for calibrating the lateral acceleration signal measurement to a compensated lateral acceleration signal measurement; the first and second calibration filters having identical synchronization; a yaw rate sensor, including compensation, providing a compensated yaw rate signal measurement; a processor a) for the compensated yaw rate signal measurement and the compensated lateral acceleration signal measurement to derive a signal measurement of road bank angle disturbance not compensated for in the compensated steering angle signal measurement, b) providing the compensated steering angle signal measurement and the signal measurement of road bank angle disturbance not compensated for in the compen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Relative vehicle platform having synchronized adaptive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Relative vehicle platform having synchronized adaptive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relative vehicle platform having synchronized adaptive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.