Graphical user interface having sound effects for operating...

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S215000, C345S950000

Reexamination Certificate

active

06297818

ABSTRACT:

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND
The present invention relates generally to graphical user interfaces for computer systems. More particularly, the present invention relates to systems and methods for interfacing applications and operating systems which provide for added behavior, in the form of sound effects, over object operation and movement in graphical user interfaces.
The evolution of the computer industry is unparalleled in its rate of growth and complexity. Personal computers, for example, which began as little more than feeble calculators with limited memory, tape-driven input and monochrome displays are now able to tackle almost any data processing task. While this meteoric increase in power was almost sufficient to satisfy the demand of application programmers and end users alike, the corresponding increase in complexity created an ease-of-use problem which the industry was somewhat slower in solving. Thus, designers were faced with a new challenge: to harness this computing power in a form usable by even those with relatively little computer training to smooth the transition of other industries into a computer-based information paradigm.
As a result, in the early to mid-1980's many new I/O philosophies, such as “user friendly,” “WYSIWYG” and “menu driven” came to the forefront of the industry. These concepts are particularly applicable to microcomputers, also known as personal computers, which are intended to appeal to a broad audience of computer users, including those who previously feared and mistrusted computers. An important aspect of computers which employ these concepts was, and continues to be, the interface which allows the user to input commands and data and receive results, which is commonly referred to as a graphical user interface (GUI).
One type of GUI display is based on a visual metaphor which uses a monitor screen as a work surface called a “desktop” where documents are presented in relocatable regions termed “windows”. The user interacts with the computer by, for example, moving objects on the desktop, choosing commands from menus, and manipulating window control elements, such as checkboxes and scroll bars. An exemplary desktop screen is reproduced as FIG.
1
. Therein, various GUI objects including windows and icons are depicted.
Windows are one example of GUI objects which can be virtually any size, shape, or color. Some standard types of windows are commonly predefined for the interface including, for example, a document window and a dialog box. One example of a standard for a document window is illustrated in FIG.
2
. Each document window which conforms to this standard has a title bar with a title drawn in a system-defined font and color. Active document windows can also have control elements as illustrated in
FIG. 2
, for example, a close box, a zoom box, a size box, and scroll bars. Other control elements, not shown in
FIG. 2
, include buttons, menu items and checkboxes. Those skilled in the art will recognize that myriad other control elements are known and in use.
Control elements are on-screen objects that a user can manipulate with, for example, a mouse to cause an immediate action or modify settings to cause a future action. For example, a button control element can provide for the graphical user interface to receive user input as to a selected function to be performed by the system.
FIG. 3
illustrates a window entitled “Find” having three button control elements whose titles describe the function to be performed when these control elements are activated. A user can activate a button control element in a variety of ways, for example by positioning a cursor (not shown in
FIG. 3
) over the control element and providing an activating input, e.g., depressing a mouse button.
As shown in
FIG. 3
, control elements are typically displayed in a static default or normal state. However, when a button control element is actuated the graphical user interface redraws the control element in a second static state which visually informs the user that the system has recognized the user's input and is performing the desired function. For example, some conventional graphical user interfaces redraw button control elements in a depressed state to indicate activation. However, most software applications provide little or no corresponding sound behavior to accompany the transition between states.
The success of these types of conventional interfaces is evident from the number of companies which have emulated the desktop environment. Even successful concepts, however, must continually be improved in order to keep pace with the rapid growth in this industry. The advent of multimedia, especially CD-ROM devices, has provided vast quantities of secondary storage which have been used to provide video capabilities, e.g., live animation and video clips, as regular components of applications. With these new resources at their disposal, application designers, and others, desire additional control over the appearance and behavior of the display, including the desktop environment and, in particular, objects and control elements on the desktop.
In the related application entitled “Graphical User Interfaces Having Animated Control Elements”, it has been described how to provide additional control over the appearance of, for example, control elements by providing animated transition effects. The present invention expands upon these concepts by describing various techniques for creating realistic sound effects which can be provided to support object actions and enhance the behavior of the graphical user interface.
SUMMARY
According to exemplary embodiments of the present invention, improved behavioral characteristics can be provided to GUIs by providing sound effects associated with object operations. For example, one-shot sounds can be output when control elements are operated, e.g., a sound associated with actuating a button control element. The volume, pitch, delay and frequency of the sound effect can be varied either randomly or by the theme designer.
According to other exemplary embodiments of the present invention, a more complicated sound effect can be provided for GUI operations which involve dragging an object, e.g., an icon or a window, across the display. In these embodiments, a portion of the sound effect is repeated to provide for a variable length sound effect determined by the length of the drag operation. Panning can be incorporated by mixing stereo channels to provide an auditory effect of movement.


REFERENCES:
patent: 5374924 (1994-12-01), McKiel, Jr.
patent: 5767835 (1998-06-01), Obbink et al.
patent: 5801692 (1998-09-01), Muzio et al.
patent: 5867144 (1999-02-01), Wyard
patent: 5945986 (1999-08-01), Bargar et al.
patent: 5969719 (1999-10-01), Tsujimoto
patent: 6081266 (2000-06-01), Sciammarella

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphical user interface having sound effects for operating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphical user interface having sound effects for operating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical user interface having sound effects for operating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2584762

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.