Methods and systems for a solar cell concentrator

Batteries: thermoelectric and photoelectric – Photoelectric – Panel or array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S292000, C136S291000, C136S259000, C136S245000, C244S173300, C438S066000, C438S069000, C438S072000, C438S073000, C438S080000, C257S432000

Reexamination Certificate

active

06188012

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to solar cells. In particular, the invention relates to methods and apparatuses for solar cell concentrator arrays.
2. Description of the Related Art
Photovoltaic cells, commonly called solar cells, are well-known devices which convert solar energy into electrical energy. Solar cells have long been used to generate electrical power in both terrestrial and space applications. Solar cells offer several advantages over more conventional power sources. For example, solar cells offer a clean method for generating electricity. Furthermore, solar cells do not have to be replenished with fossil fuels. Instead, solar cells are powered by the virtually limitless energy of the sun.
In space applications, hundreds or thousands of the small solar cells are interconnected together to form large solar arrays. To increase the amount of power generated from these arrays, concentrators are often used. Concentrators increase the amount of light that falls on the array solar cells, which in turn generate increased electrical power.
Conventional concentrators often are implemented as reflectors. However, these conventional reflectors typically suffer from significant limitations. Conventional reflectors tend to be expensive, heavy, and hard to stow and deploy. Additionally, using one conventional technique, reflectors are positioned around the array, thereby causing reflected light to fall upon different cells with different intensities, causing solar cell hot spots. These hot spots may have to be cooled using complicated and heavy cooling mechanisms, such as heat pipes. Because of the great expense associated with lifting each pound of material into space, the real costs associated with these heavy systems are significant.
Using another conventional technique, rigid, thick reflectors, permanently extending two or more inches above the solar cells, may be placed at several locations on a solar cell array. This technique disadvantageously requires a great deal of stow room due to the height of the reflectors. Furthermore, the thick, heavy reflectors add significant weight to the array.
Still other conventional concentrator techniques use lenses positioned over the solar cells. These lenses may be relatively expensive and thick, and so disadvantageously add weight and height to the array panel. Lenses also require a relatively high degree of pointing accuracy to ensure that the solar cells receive the desired degree of focused light.
SUMMARY OF THE INVENTION
One embodiment of the present invention is a solar cell concentrator array suitable for use in space. In one embodiment, the concentrator is distributed throughout all or portions of the array and is compressible. By compressing the concentrator for stowage, the overall volume needed to store the array is advantageously significantly less than that needed for arrays using conventional concentrators.
In one embodiment, the novel concentrator configuration automatically deploys using an expansion device, such as one or more spring assemblies, during a conventional rigid or flexible array panel deployment. Thus, the need for off-panel storage areas and/or complex deployment mechanisms are thereby advantageously reduced or eliminated.
In addition, in one embodiment, the concentrator configuration is of low mass. For example, in one embodiment, the concentrator is formed from a thin film material, thereby greatly reducing the weight of the concentrator. For example, the concentrator may be formed using a reflective polymide material or a fluorocarbon material.
Because one embodiment of the novel concentrator is distributed over the array, this concentrator configuration provides relatively even distribution of the thermal load due to reflected light, and since the average energy in one embodiment approximates the average energy of a non-concentrator array, further ensures that the maximum temperature of the array solar cells is not excessive.
Furthermore, in one embodiment, the distributed concentrator configuration enhances overall panel reliability since the failure of one concentrator assembly affects only the solar cells local to the failed concentrator assembly. In addition, in one embodiment, the pointing accuracy needed is reduced as compared to many conventional concentrator designs, reducing costs associated with alignment. Further, one embodiment of the present invention allows the structural flatness of the array to be maintained.
One embodiment of the present invention is a solar cell array intended for use in space. The solar cell array includes a lightweight, compressible concentrator which can be reliably and efficiently deployed. The solar cell array includes a first column of solar cells and a second column of solar cells. A reflective concentrator may be positioned between the first column of solar cells and the second column of solar cells. The reflective concentrator may include a thin film material, where the reflective concentrator is compressible to a first height when in the stowed position. A spring may be coupled to the concentrator, wherein the spring urges the reflective concentrator to a second height when the reflective concentrator is deployed.
Another embodiment of the present invention is a method of assembling a solar cell array. A first column and a second column of solar cells is provided on an array panel. A reflective concentrator formed at least partly from thin film material is provided as well. The reflective concentrator is positioned between the first column of solar cells and the second column of solar cells. The reflective concentrator is compressible to a first height for stowing and extends to a second height for deployment.


REFERENCES:
patent: 3125091 (1964-03-01), Sleeper, Jr.
patent: 3232795 (1966-02-01), Gillette et al.
patent: 5244508 (1993-09-01), Colozza
patent: 5496414 (1996-03-01), Harvey et al.
patent: 5520747 (1996-05-01), Marks
patent: 5578139 (1996-11-01), Jones et al.
patent: 5660644 (1997-08-01), Clemens

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for a solar cell concentrator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for a solar cell concentrator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for a solar cell concentrator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2583406

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.