System and method for allowing communication between...

Telephonic communications – Plural exchange network or interconnection – Interexchange signalling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S220010, C370S352000, C370S401000

Reexamination Certificate

active

06307931

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to telecommunications and, more specifically, to a system and method for allowing communication between networks having incompatible addressing formats and a telecommunications infrastructure employing the same.
BACKGROUND OF THE INVENTION
Since the advent of telephone communications, callers have frequently failed to make contact with the individual they are calling either because that person is currently on another line, not in that location, or otherwise preoccupied. The resulting game of “phone tag” is both time and monetarily inefficient. The time and monetary costs are especially acute in the business environment as customers are faced with unanswered calls, extended waits on hold, unconveyed important information or the like.
In response to these problems, electronic voice and text messaging systems have been developed to provide a more reliable repository of messages. Voice messaging systems (VMSs), in particular, have proliferated in both residential and business use. In the residential context, VMSs may be as simple as an answering machine. In the business context, on the other hand, VMSs may be expensive and complex systems for use in telephone switching centers. VMSs are used to automate the answering of incoming calls from an external telephone network and the taking of messages when the extensions are not answered by the called parties. Individuals (senders), using standard dual tone multi-frequency (DTMF) phones may gain access to the VMS and create messages that are then addressed and sent to one or more select other users (recipients) of the system. Such voice messaging systems incorporate features, such as the recording of voice messages for users in what are known as “mailboxes.” Additionally, access to the VMS may also be gained by users calling from private branch exchange (PBX) extensions or from a telephone network over incoming trunk lines to access their mailbox to listen to deposited voice messages.
Another popular and rapidly growing mechanism for transmission and receipt of messages involves the use of computers that are connected together in a network such as a local area network (LAN) or a wide area network (WAN). One of the most common applications for communication between users within a network, such as Internet, is electronic mail (e-mail). In its infancy, e-mail systems only handled text-based messages. Increasingly, e-mail applications are being enhanced to also support the transmission and receipt of information in other formats, e.g., graphics, facsimile and voice.
Internet telephony applications are becoming an attractive alternate for conventional telephony services, primarily because of the promise of substantial reduction in communication costs. Furthermore, there are a large number of applications and new multimedia capabilities available on the Internet. The Internet “telephone” with a computing device, e.g., a personal computer, often employing a packet-based technology, provides the caller with a greater flexibility and control as opposed to the traditional telephone devices.
The two examples of disparate communication networks discussed above, i.e., switched telephone networks and packet-based networks, currently employ different addressing schemes to distinguish between users within their network systems. For example, traditional VMSs use telephone number addressing to identify the sender and recipient of a message. Voice messaging protocols typically use only numeric telephone numbers to identify the originator and recipient and, as a consequence, most conventional voice mail systems commercially available provide support only for telephone number based addresses. On the other hand, a packet network application, such as Internet voice messaging (IVM), uses the existing Internet e-mail infrastructure to extend the reach of the voice mail community. Internet protocols employ mailbox names along with domain name system (DMS) addresses to identify an originator and recipient of a message uniquely.
Disparate identification schemes employed by different communication networks further exacerbate the problems encountered when responding to received messages from a different communication network. Not only is recognizing the originator of a message a problem if the receiving communication network does not support the originator communication network addressing format, but also identifying the reply-to address to facilitate a reply.
Accordingly, what is needed in the art is an improved method for permitting disparate communication networks to send and reply to messages thereamong.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, the present invention provides, for use with a network having a limited address format, a system for, and method of, allowing the network to transmit a message to a non-compliant reply-to address without (outside of) the network and a telecommunications infrastructure employing the same. In one embodiment, the system includes: (1) a compliant address generator that generates a spurious surrogate address employable within the network in lieu of the non-compliant reply-to address, the spurious surrogate address complying with the address format of the network and (2) a database manager, coupled to the compliant address generator, that stores a record containing the non-compliant reply-to address and the spurious surrogate address in an associated database to allow the non-compliant reply-to address to be substituted for the spurious surrogate address to permit the message to be transmitted to without the network.
For purposes of the present invention, a spurious surrogate address is a dissociated address that stands in for a real, but non-compliant address. “Dissociated” is defined as not corresponding to a real endpoint (which may be a telephone, terminal or mailbox). Dissociated addresses therefore include unassigned extensions in a given PBX or unassigned telephone numbers in a given area code, all telephone numbers in an unassigned exchange, area code or country code or any other string of characters or codes that does not correspond to an existing endpoint.
The present invention therefore introduces the broad concept of generating a spurious surrogate address that may or may not be based on the non-compliant reply-to address. This would allow communication between networks having incompatible addressing formats. More specifically, rendering a spurious surrogate address allows non-compliant addresses to be accommodated within a limited format network without requiring preregistration of the noncompliant addresses and without requiring the surrogate address to be a valid address. Legacy voicemail networks having restricted numeric address formats may therefore be able to accommodate replies to alphanumeric e-mail addresses or the like. For purposes of the present invention, “address” is broadly defined as an identifier for an originator or recipient of any form of communication.
In one embodiment of the present invention, the record contains a time stamp, the database manager deleting the record as a function of the time stamp. In a more specific embodiment, the database manager detects subsequent uses of the reply-to address and alters the time stamp in response thereto. The time stamp allows records to be preserved and purged as required. The preservation period may be fixed or selectable, and may apply network-wide or on a mailbox-class or mailbox-by-mailbox basis.
In one embodiment of the present invention, the network is a telephone network, the limited address format is a telephone number format and the non-compliant address is an Internet identifier such as an electronic mail address or a gatekeeper handle. In more specific embodiments, the telephone network may be a public switched telephone network (PSTN) or a private branch exchange (PBX). Three embodiments of the present invention will be illustrated and described in the Detailed Description that follows. Those skilled in the art will

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for allowing communication between... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for allowing communication between..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for allowing communication between... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2583131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.