Electricity: battery or capacitor charging or discharging – Battery or cell discharging – With charging
Reexamination Certificate
1999-09-01
2001-11-06
Wong, Peter S. (Department: 2838)
Electricity: battery or capacitor charging or discharging
Battery or cell discharging
With charging
C320S130000
Reexamination Certificate
active
06313607
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to testing of storage batteries. More specifically, the invention relates to evaluating stored charge in an electrochemical cell or battery.
Stored charge is an important parameter in many applications of electrochemical cells and batteries. With traction batteries, stored charge represents an electric vehicle's fuel supply and thus determines how far the vehicle can travel before recharging. With stationary standby batteries, the level of stored charge determines how long a critical load can continue to function in the event of a power failure or disconnection from the ac mains. In automotive applications, stored charge determines the length of time that the lights and accessories can be operated when the engine is off, or when the charging system has malfunctioned.
With lead-acid batteries, relative stored charge, or state-of-charge (SOC), has been traditionally evaluated by observing either the battery's open-circuit voltage, or the specific gravity of the battery's electrolyte. However, neither of these measurements yields an absolute determination of the amount of stored charge. Furthermore, specific gravity measurements are messy and altogether impossible to perform on sealed lead-acid cells; and open-circuit voltage is difficult to determine under load conditions, and is imprecisely related to SOC since it is greatly affected by both “surface charge” and temperature.
Because of these problems, several techniques for correcting the voltage of lead-acid batteries to obtain SOC have been proposed. These include the techniques described by Christianson et al. in U.S. Pat. No. 3,946,299, by Reni et al. in U.S. Pat. No. 5,352,968, and by Hirzel in U.S. Pat. No. 5,381,096. However, such voltage correction methods are not very accurate. Furthermore, with electrochemical systems other than lead-acid, they may be of little help since battery voltage often bears very little relationship to stored charge.
Because of the problems with traditional methods for determining relative charge (SOC), many techniques based upon measuring ac impedance have been suggested. For example, U.S. Pat. No. 3,984,762 to Dowgiallo purports to determine SOC directly from the phase angle of the complex impedance at a single frequency. In U.S. Pat. No. 4,743,855, Randin et al. assert that SOC can be determined from the argument (i.e., phase angle) of the difference between complex impedances measured at two different frequencies. Bounaga, in U.S. Pat. No. 5,650,937, reportedly determines SOC from measurements of the imaginary part of the complex impedance at a single frequency. Finally, Basell et al., in U.S. Pat. No. 5,717,336 purport to determine SOC from the rate of change of impedance with frequency at low frequency. However, the fact that none of these ac impedance methods has gained wide acceptance suggests that they may not be altogether satisfactory methods for determining SOC.
The absolute stored charge or amp-hour capacity of batteries has been traditionally measured by timed-discharge tests. However, because of the expense and the time involved in performing such tests, ac techniques for determining amp-hour capacity have been proposed. Sharaf, in U. S. Pat. No. 3,808,522, teaches a method for determining the capacity of a lead-acid battery from measurements of its ac internal resistance. Yang, in U.S. Pat. No. 5,126,675, also uses measurements of internal resistance to determine battery capacity. Muramatsu reports, in U.S. Pat. No. 4,678,998, that he can determine both the remaining amp-hour capacity and the remaining service life of a battery from measurements of the ac impedance magnitude at two different frequencies. Fang, in U.S. Pat. No. 5,241,275, teaches a method for determining remaining capacity from complex impedance measured at two or three frequencies in the range from 0.001 to 1.0 Hz. Finally, Champlin, in U.S. Pat. No. 5,140,269, has shown that percent capacity can be determined from the measured dynamic conductance at a single frequency if the dynamic conductance of a reference, fully-charged, identically constructed, new battery is known. This method, although quite accurate, requires that aprioi data be available.
SUMMARY OF THE INVENTION
A testing device applies time-varying electrical excitation to a cell or battery and senses the resulting time-varying electrical response. Computation circuitry within the device uses voltage and current signals derived from the excitation and response signals as inputs and computes values of elements of an equivalent circuit representation of the cell or battery. In one aspect, the relative charge (SOC) of the cell or battery is calculated from the value of the conductance component G of a particular parallel G-C subcircuit of the equivalent circuit. In another, the absolute charge (Ah) contained in the cell or battery is calculated from the value of the capacitance component C of a different parallel G-C subcircuit. In other aspects, relative or absolute charge values are then either displayed to the user or are used to control an external process such as charging of the battery.
REFERENCES:
patent: 2514745 (1950-07-01), Dalzell
patent: 3356936 (1967-12-01), Smith
patent: 3562634 (1971-02-01), Latner
patent: 3593099 (1971-07-01), Scholl
patent: 3607673 (1971-09-01), Seyl
patent: 3676770 (1972-07-01), Sharaf et al.
patent: 3729989 (1973-05-01), Little
patent: 3753094 (1973-08-01), Furuishi et al.
patent: 3808522 (1974-04-01), Sharaf
patent: 3811089 (1974-05-01), Strezelewicz
patent: 3873911 (1975-03-01), Champlin
patent: 3886443 (1975-05-01), Miyakawa et al.
patent: 3889248 (1975-06-01), Ritter
patent: 3906329 (1975-09-01), Bader
patent: 3909708 (1975-09-01), Champlin
patent: 3936744 (1976-02-01), Perlmutter
patent: 3946299 (1976-03-01), Christianson et al.
patent: 3947757 (1976-03-01), Grube et al.
patent: 3969667 (1976-07-01), McWilliams
patent: 3979664 (1976-09-01), Harris
patent: 3984762 (1976-10-01), Dowgiallo, Jr.
patent: 3984768 (1976-10-01), Staples
patent: 3989544 (1976-11-01), Santo
patent: 4008619 (1977-02-01), Alcaide et al.
patent: 4053824 (1977-10-01), Dupuis et al.
patent: 4070624 (1978-01-01), Taylor
patent: 4086531 (1978-04-01), Bernier
patent: 4112351 (1978-09-01), Back et al.
patent: 4114083 (1978-09-01), Benham et al.
patent: 4126874 (1978-11-01), Suzuki et al.
patent: 4178546 (1979-12-01), Hulls et al.
patent: 4193025 (1980-03-01), Frailing et al.
patent: 4207611 (1980-06-01), Gordon
patent: 4315204 (1982-02-01), Sievers et al.
patent: 4316185 (1982-02-01), Watrous et al.
patent: 4322685 (1982-03-01), Frailing et al.
patent: 4363407 (1982-12-01), Barkler et al.
patent: 4369407 (1983-01-01), Korbell
patent: 4379990 (1983-04-01), Sievers et al.
patent: 4390828 (1983-06-01), Converse et al.
patent: 4392101 (1983-07-01), Saar et al.
patent: 4396880 (1983-08-01), Windebank
patent: 4408157 (1983-10-01), Beaubien
patent: 4412169 (1983-10-01), Dell'Orto
patent: 4423378 (1983-12-01), Marino et al.
patent: 4423379 (1983-12-01), Jacobs et al.
patent: 4424491 (1984-01-01), Bobbett et al.
patent: 4459548 (1984-07-01), Lentz et al.
patent: 4514694 (1985-04-01), Finger
patent: 4520353 (1985-05-01), McAuliffe
patent: 4667279 (1987-05-01), Maier
patent: 4678998 (1987-07-01), Muramatsu
patent: 4679000 (1987-07-01), Clark
patent: 4697134 (1987-09-01), Burkum et al.
patent: 4707795 (1987-11-01), Alber et al.
patent: 4709202 (1987-11-01), Koenck et al.
patent: 4710861 (1987-12-01), Kanner
patent: 4719428 (1988-01-01), Liebermann
patent: 4743855 (1988-05-01), Randin et al.
patent: 4745349 (1988-05-01), Palanisamy et al.
patent: 4816768 (1989-03-01), Champlin
patent: 4820966 (1989-04-01), Fridman
patent: 4825170 (1989-04-01), Champlin
patent: 4849700 (1989-07-01), Morioka et al.
patent: 4876495 (1989-10-01), Palanisamy et al.
patent: 4881038 (1989-11-01), Champlin
patent: 4912416 (1990-03-01), Champlin
patent: 4929931 (1990-05-01), McCuen
patent: 4931738 (1990-06-01), MacIntyre et al.
patent: 4937528 (1990-06-01), Palanisamy et al.
patent: 4947124 (1990-08-01), H
Luk Lawrence
Wong Peter S.
LandOfFree
Method and apparatus for evaluating stored charge in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for evaluating stored charge in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for evaluating stored charge in an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2579836