Reversing flow blood processing system having reduced...

Chemical apparatus and process disinfecting – deodorizing – preser – Blood treating device for transfusible blood

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S006100, C604S004010, C604S006160, C604S032000, C210S646000

Reexamination Certificate

active

06319465

ABSTRACT:

BACKGROUND OF THE INVENTION
Hemodialysis and other forms of extracorporeal blood treatment require the removal of blood from a patient by means of an arterial set, passing of the blood to a blood processing device such as a dialyzer, and returning of the blood to the patient again through a venous blood set.
Maintenance of a good blood set access is a major cost of dialysis, which is the most common extracorporeal blood treatment, although other types of blood treatment are also used, for example passing of the blood through an absorption bed for removal of toxins and the like, hemoperfusion, and other forms of blood treatment.
Beyond the initial cost of the surgical procedure to establish a fistula or graft in the patient, the keeping of adequate blood flow in an arterialized vein or synthetic arteriovenous graft of the patient frequently involves secondary surgical intervention for reconstruction of an old blood vessel site on the patient. Alternatively, it may be necessary to establish an entirely new fistula or graft at a new site if the old one fails.
Failure is evidenced typically by stenosis of the blood vessel, or blockage of an implanted catheter or other venous access site, with a consequent reduction in blood flow that eventually shuts down the site. Clotting is also a major cause of reduced blood flow.
If site failure is detected early enough, a less invasive technique such as balloon angioplasty can be employed to open the stenosis at a greatly reduced cost. Early detection of stenosis can be measured by change in pressure in the blood vessel or implant that reflects a restriction beginning to form. The technique described in Omachi U.S. Pat. No. 5,454,374 has been used to measure the baseline pressure access site for early detection of such a pressure change. Another method used by clinicians is to measure recirculation in the vessel during dialysis. As the flow is restricted in the access, the blood pumping rate indicated on the dialysis machine may exceed the flow rate of fresh blood coming into the vessel, so that some is recirculated from the venous access site to the arterial access site in the patient. This leads to inadequate dialysis since already cleansed blood is thus being reprocessed.
Various methods for measuring the degree of recirculation of this type are known. Another method described by Krivitsky determines blood flow in the access as a marker for stenosis. In this method blood set flow and recirculation are compared between arterial and venous flow in the normal orientation, and then with reversed flow between the arterial and venous access sites, which are typically fistula needles which enter the vein. In the prior art, clinicians typically accomplish this by stopping the flow of blood, clamping off all the lines, disconnecting the set or sets from the fistula needles, and then reconnecting the arterial line to the venous fistula while connecting the venous line to the arterial fistula.
Also regarding catheters (which are typically connected to larger veins or even the vena cava) it is known that catheter blockage may be relieved by reversing flow.
By this invention, a flow set is provided for the communication of blood between a patient and a blood processing device in which the flow restriction in a patient access site can be easily monitored without any external disconnection of the connections needed for the normal flow of blood from a patient to a blood processing device such as a dialyzer, and then from the dialyzer back to the patient. Thus, a great improvement in the convenience of use of the tubular set of this invention is provided. Also, breaks in sterility are avoided, since there is no need to make external disconnections in order to test the patency of a patient access site. Also, the tubular set of this invention can be a combined arterial and venous set, while, most often in the prior art, a separate arterial set and a separate venous set are used. This provides convenience of use through the unification of the set.
There is no need to make internal disconnections in order to test the patency of the patient access site blood flow.
Also, the tubular set portion of this invention can be an insertable segment containing a flow reversal valve which can inserted into conventional arterial and venous circuits between the fistula needles and blood tubing. Alternatively, the tubular set portion of this invention can be an integral part of the arterial and venous sets, but connected to a fistula set for connection to the patient at their arterial and venous ends, and generally connected to a dialyzer or other blood processing device. Also, the invention of this application can be used as a combined arterial or venous set, while, most often in the prior art, a separate arterial set with a separate venous set are used.
Catheters which are implanted in the venous system of a patient for dialysis access or the like may develop a “fibrin sheath” on the outside of the catheter within the blood vessel, for example the jugular or subclavian veins or the vena cava. This fibrin sheath coats the outside of the catheter and can extend over the end thereof.
At the outflow port, such a fibrin sheath is generally not too serious a problem since the outflowing blood forces the fibrin sheath open easily. However, at the inflow port of the catheter, the sheath can act as a one-way valve, collapsing with increasing negative pressure to seriously interfere with flow through the catheter.
Upon such an occurrence, by the sets of this invention, the blood flow through such a blood access catheter can be reversed for continuation of a desired medical procedure such as hemodialysis application.
The inventors of this application have previously filed a patent application Ser. No. 09/095,873, filed Jun. 10, 1998, entitled “Reversing Flow Blood Processing System,” which application discloses a blood processing system having a reverse flow valve therein so that flow through the arterial and venous fistulas, or other equivalent patient connection equipment, can be reversed without reversing or stopping the blood pump. By the invention of this application, a flow reversal valve is provided in which the blood flow path through the reverse flow valve encounters little stagnant area where blood can pool and thus initiate clotting. The parts of the reversing flow valve of this present application can all be made by molds without the need for side action, resulting in a simpler and less expensive molding process, and thus a less expensive final product of a flow reversing valve. Additionally, the actual position of the reversing flow valve disclosed in this application is intuitively determinable by the user as to whether or not it is in the desired position. Thus, the valve is easy to use, resulting in a tubular set portion which contains a valve having excellent utility for the end user.
DESCRIPTION OF THE INVENTION
The tubular set portion of this invention may be for use with a complete tubular arrangement for the extracorporeal treatment of blood. Alternatively, the tubular set portion may comprise as little as the reversing flow valve itself, or a reversing flow valve and attached flexible arterial and venous conduits for connection with remaining portions of the arterial and venous sets. Also, the tubular set portions may include the entire system, connected to a hemodialyzer, hemofiltration device, or other blood processing device and also in connection with fistulas or other patient access devices.
The tubular set portion of this invention comprises a flow reversing valve; a patient arterial line and a patient venous line, each separately connected to one side of said valve; and a unit arterial line and a unit venous line each separately connected to another side of said valve. The patient arterial line connects through the valve with the unit arterial line in a first position of the valve, and the patient venous line connects with the unit venous line in the same first position. The patient arterial line connects through the valve with the unit venous line in a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reversing flow blood processing system having reduced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reversing flow blood processing system having reduced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reversing flow blood processing system having reduced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2578395

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.