Pancreatic progenitor cells, methods and uses related thereto

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of regulating cell metabolism or physiology

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S371000, C435S378000

Reexamination Certificate

active

06326201

ABSTRACT:

BACKGROUND OF THE INVENTION
Insulin-dependent diabetes mellitus (IDDM) is a disease characterized by elevated blood glucose and the absence of the hormone insulin. The cause of the raised sugar levels is insufficient secretion of the hormone insulin by the pancreas. In the absence of this hormone, the body's cells are not able to absorb sugar from the blood stream in normal fashion, and the excess sugar accumulates in the blood. Chronically elevated blood glucose damages tissues and organs. IDDM is treated with insulin injections. The size and timing of insulin injections are influenced by measurements of blood sugar.
There are over 400 million diabetics in the world today. For instance, diabetes is one of the most prevalent chronic diseases in the United States, and a leading cause of death. Estimates based on the 1993 National Health Interview Survey (NHIS) indicate that diabetes has been diagnosed in 1% of the U.S. population age <45 years, 6.2% of those age 45-64 years, and 10.4% of those age >65 years. In other terms, in 1993 an estimated 7.8 million persons in the United States were reported to have this chronic condition. In addition, based on the annual incidence rates for diabetes, it is estimated that about 625,000 new cases of diabetes are diagnosed each year, including 595,000 cases of non-insulin-dependent diabetes mellitus (NIDDM) and 30,000 cases of insulin-dependent diabetes mellitus (IDDM).
The total cost of diabetes in the United States has been estimated at $92 billion annually, including expenditures on medical products, hospitalization and the value of lost work. Substantial costs to both society and its citizens are incurred not only for direct costs of medical care for diabetes, but also for indirect costs, including lost productivity resulting from diabetes-related morbidity and premature mortality. Persons with diabetes are at risk for major complications, including diabetic ketoacidosis, end-stage renal disease, diabetic retinopathy and amputation. There are also a host of less directly related conditions, such as hypertension, heart disease, peripheral vascular disease and infections, for which persons with diabetes are at substantially increased risk.
While medications such as injectable insulin and oral hypoglycemics allow diabetics to live longer, diabetes remains the third major killer, after heart disease and cancer. Diabetes is also a very disabling disease, because medications do not control blood sugar levels well enough to prevent swinging between high and low blood sugar levels, with resulting damage to the kidneys, eyes, and blood vessels.
Studies have documented that medical costs for persons with diabetes are higher because they visit physician's offices, hospital outpatient departments, and emergency rooms more frequently than their nondiabetic counterparts, and are more likely to be admitted to the hospital. Americans with diabetes have two to five times higher per capita total medical expenditures and per capita out-of-pocket expenses than people without diabetes. These expenses and their associated loss of productivity have impact not only on diabetic patients and their families, but on federal and state governments and society as a whole.
Data from the Diabetes Control and Complications Trial (DCCT) show that intensive control of blood glucose significantly delays complications of diabetes, such as retinopathy, nephropathy, and neuropathy, compared with conventional therapy consisting of one or two insulin injections per day. Intensive therapy in the DCCT included multiple injection of insulin three or more times per day or continuous subcutaneous insulin infusion (CSII) by external pump. Insulin pumps are one of a variety of alternative approaches to subcutaneous multiple daily injections (MDI) for approximating physiological replacement of insulin.
Replenishment of functional glucose-sensing, insulin-secreting pancreatic beta cells through islet transplantation has been a longstanding therapeutic target. The limiting factor in this approach is the availability of an islet source that is safe, reproducible, and abundant. Current methodologies use either cadaverous material or porcine islets as transplant substrates (Korbutt et al., 1997). However, significant problems to overcome are the low availability of donor tissue, the variability and low yield of islets obtained via dissociation, and the enzymatic and physical damage that may occur as a result of the isolation process (reviewed by Secchi et al., 1997; Sutherland et al., 1998). In addition are issues of immune rejection and current concerns with xenotransplantation using porcine islets (reviewed by Weir & Bonner-Weir, 1997).
It is an object of the present invention to create functional beta cells in vitro by expansion and differentiation of a pancreatic stem/progenitor cell. Advantages lie in obviating the need for physical dissociation of tissue in order to obtain islets, and the potential for greater reproducibility and control of the process. Successful achievement requires the differentiation and maturation of glucose-sensing, insulin-secreting beta cells from an expandable precursor population.
SUMMARY OF THE INVENTION
The present invention relates to substantially pure preparations of viable pancreatic progenitor cells, and methods for isolating such cells from pancreatic ductal tissues, notably intralobular ductal tissue. The present invention further concerns certain uses for such progenitor cells, and their progeny.
In general, the invention features a cellular composition including, as the cellular component, a substantially pure population of viable pancreatic progenitor cells which progenitor cells are capable of proliferation in a culture medium. In a preferred embodiment, the cellular composition has fewer than about 20%, more preferably fewer than about 10%, most preferably fewer than about 5% of lineage committed cells.
In one embodiment, the progenitor cells of the present invention are characterized by an ability for self-regeneration in a culture medium and differentiation to pancreatic lineages. In a preferred embodiment, the progenitor cells are inducible to differentiate into pancreatic islet cells, e.g., &bgr; islet cells, &agr; islet cells, &dgr; islet cells, or &phgr; islet cells. Such pancreatic progenitor cells may be characterized in certain circumstances by the expression of one or more of: homeodomain type transcription factors such as STF-1; PAX gene(s) such as PAX6; PTF-1; hXBP-1; HNF genes(s); villin; tyrosine hydroxylase; insulin; glucagon; and/or neuropeptide Y. The pancreatic progenitor cells of the present invention may also be characterized by binding to lectin(s), and preferably to a plant lectin, and more preferably to peanut agglutinin. In certain preferred embodiments, the progenitor cells are PDX1+, e.g., by FACS sorting, and capable of differentiation into glucose-responsive insulin secreting cells.
In certain preferred embodiments, the progenitor cells are PDX1+ and Glut2+. In certain preferred embodiments, the progenitor cells are PDX1
+
, Glut2
+
and stain with PNA.
In certain preferred embodiments, the subject pancreatic progenitor cells will have one or more of the following characteristics: (i) able to grow in 2-5 percent fetal calf serum; (ii) able to grow on plastic, e.g., no need to use matrigel; (iii) no statistically significant induction of cells to proliferate or differentiate when treated with TGF&bgr;5 (GenBank accession P16176) at concenrates up to 30 pg/ml.
In yet another embodiment, the invention features a pharmaceutical composition including as the cellular component, a substantially pure population of viable pancreatic progenitor cells, which progenitor cells are capable of proliferation in a culture medium.
In general, the preferred progenitor cells will be of mammalian origin, e.g., cells isolated from a primate such as a human, from a miniature swine, or from a transgenic mammal, or are the cell culture progeny of such cells. In one embodiment, pancreatic ductual tis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pancreatic progenitor cells, methods and uses related thereto does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pancreatic progenitor cells, methods and uses related thereto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pancreatic progenitor cells, methods and uses related thereto will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2577649

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.