Longitudinally adjustable mount for a snowboard binding

Land vehicles – Runner vehicle – Standing occupant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S633000

Reexamination Certificate

active

06189899

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the invention is adjustable mounts for snowboard bindings.
Snowboarding is a sport wherein a person uses a snowboard for recreational travel down a snow-covered inclined surface. A mount fastens a binding to the snowboard. The popularity of snowboarding is growing all over the world. Snowboarding is beginning to rival skiing as a recreational sport. While snowboarding a person stands on the snowboard with both feet and his body angled to the longitudinal axis of the snowboard.
U.S. Pat. No. 5,261,698 teaches a binding whose rotational position relative to an axis perpendicular to a snowboard can be adjusted. The binding includes a hold-down plate and a binding base plate. The hold-down plate may be secured to the snowboard in several different positions on the board and is fixed to the snowboard by screws extending through a set of holes in the hold-down plate. The binding base plate can be rotated relative to the hold-down plate. The binding base plate and the hold-down plate each have ribs or ridges, respectively, which lock the angular position of the binding base plate relative to the hold-down plate. The rotational position of the binding base plate can only be adjusted by removing the boot from the binding base plate and disengaging the screws from the holes in the hold-down plate. Therefore, angular adjustment of the binding cannot be done “on the fly”.
Some bindings permit a person using a snowboard to adjust their rotational orientation on the snowboard. The French company Look makes a binding which includes a circular plate and a footbed. The circular plate is attached to the snowboard by a set of screws which engage with the snowboard. The footbed has a central aperture for rotatably receiving the circular plate. A lock assembly locks the footbed in a predetermined rotational position with respect to the circular plate. A housing, including one or more fasteners, is attached to the footbed for securing a boot to the footbed so that the boot cannot be pulled free of the footbed except when the fasteners are released. A person adjusts the orientation of the binding at the beginning of the season and often makes no further adjustments.
U.S. Pat. No. 5,577,755 teaches a rotatable binding for a snowboard includes a base plate and a binding plate. The base plate is mounted on the snowboard. The binding plate is rotatably mounted on the base plate. The rotatable binding also includes a locking assembly which includes a pin and a foot binding. The locking assembly selectively locks, at a desired angle of rotation, the binding plate to the base plate. The base plate includes an indexing platform and a pedestal which is disposed on the bottom of the base plate. The indexing platform has a multiplicity of bores arranged in a circular arc about a central axis. The pedestal has a width about the width of a human foot and traverses the snowboard in order to support the indexing platform above the top surface of the snowboard. The pin does not restrict rotation of the binding base plate relative to the base plate and is selectively moveable from a raised position to a lowered position. The pin engages an indexing bore such that the binding plate may not rotate relative to the base plate.
U.S. Pat. No. 5,028,068 teaches a device which pivotally mounts a binding on a snowboard on the upper surface thereof. A manually operated handle allows the binding to be changed in any direction desired and thereafter with a flip of the handle locked into the selected position. The binding includes a binding base plate and a swivel plate. The binding base plate is mounted on the swivel plate.
U.S. Pat. No. 5,354,088 teaches a coupling which releasably mounts a binding to a turntable. The turntable is adjustably secured to a snowboard.
U.S. Pat. No. 4,871,337 teaches a snowboard in which the rider's feet are positionable within bindings which are formed on first and second riding plates. Each of the first and second riding plates is positionable above a channel section which is formed within a rider support surface of the riding apparatus. Each riding plate supports fasteners which are releasably engageable with retaining elements which are installed within the channel section. After loosening the fasteners from the retaining elements, each of the first and second riding plates may be repositioned angularly or longitudinally with respect to its channel section thereby permitting the snowboard to be used with a variety of stances and leg spacings.
U.S. Pat. No. 5,021,017 teaches a water sports board which has a base formed with rows of detent teeth for locking engagement with the peripheral teeth of binder plates. The binder plate may be angularly or longitudinally adjusted relative to the base. The board also has a pair of boots that are mounted to the binder plates and mounting assemblies for mounting the binder plates to the base. Today there exits several kinds of water sports boards including surfboards, kneeboards, water skis and boards upon which a rider, towed by a power boat, stands with his feet spread longitudinally apart upon the board. Some of these boards, including the last mentioned type to which this invention particularly pertains, are equipped with foot bindings to stabilize the rider upon the board and to enhance his foot control of the board. With this latter type of board, which has only recently obtained popularity, the rider positions his feet on the board one behind the other at a skewed angle with respect to the longitudinal axis of the board. This posture thus is similar to that used by surfers on surfboards. Initially these types of boards were merely equipped with strips of course, frictional material to provide foot traction. Since they were pulled in tow behind powerful motor boats riders quickly found that they were not able to maintain their feet in position well enough when subjected to strong tow rope pulling forces. These types of water sports boards are equipped with foot bindings. Water ski foot bindings include a toe piece and a heal piece mounted to the top surface of the ski. One of the pieces is usually adjustable to accommodate different skier foot sizes and to facilitate foot entry. Exemplary of these are those shown in U.S. Pat. No. 2,933,741, U.S. Pat. No. 3,102,279 and U.S. Pat. No. 3,127,623. Water ski bindings have also existed by which the position of the whole binding for one foot may be repositioned upon the ski. Exemplary of this type of binding is that shown in U.S. Pat. No. 2,740,972. These water ski bindings however do not provide for angular foot adjustment since water skiing is best done with the skier's feet aligned with the skis. Recently, a board known as a Skurfer has been equipped with bindings that can be adjusted both longitudinally and angularly. Its bindings include oblong plates upon which toe and heal pieces, hereinafter collectively referred to as “boots”, are mounted. The plates are held in position by threaded posts that extend through arcuate slots in holding the plates firmly in place at selected positions upon the board. Though these types of bindings have permitted both longitudinal and angular positioning, they have tended to loosen and skew in operation. Also, their degree of angular adjustment has been limited. It thus is seen that a water sports board of the type having foot bindings which can be more fully adjusted rotationally, as well as longitudinally adjusted, and which may be easily yet securely repositioned, has remained an elusive goal.
U.S. Pat. No. 5,433,636 teaches a snowboard which has a channel extending along a portion of the length thereof. Two bindings are secured to the snowboard through the channel. Each binding may be rotated between a locked starting position in which the long axis of the binding extends parallel to the long axis of the snowboard and a locked skiing position in which the long axis of the binding extends transversely to the long axis of the snowboard. After the binding has been rotated to a selected position, the binding is secured i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Longitudinally adjustable mount for a snowboard binding does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Longitudinally adjustable mount for a snowboard binding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Longitudinally adjustable mount for a snowboard binding will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.