Treatment of conditions and disease

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S062000, C536S053000, C536S055200

Reexamination Certificate

active

06194392

ABSTRACT:

FIELD OF INVENTION
The invention relates to, formulations suitable for use to treat conditions and disease, (for example cancer), the use of such formulations to treat conditions and disease, method of treating conditions and disease, and the delivery of medicinal and therapeutic agents for the treatment of disease and conditions.
BACKGROUND OF THE INVENTION
In an article entitled “Solid cores of tumors keeping out best drugs” by Sandra Blakeslee published in the Jul. 8, 1989 edition of the Globe and Mail, Toronto, Ontario, Ms. Blakeslee submitted that a growing number of researchers believe that a basic misunderstanding of the structure of solid tumors has led researchers into designing cancer drugs that are doomed to fail in many patients.
She relates that, Dr. Herberman, Director of the Pittsburgh Cancer Center, said that for decades, cancer researchers have simply developed drugs, put them in the bloodstream and assumed they would be carried to the tumor giving almost no consideration to how uniformly the drug is distributed once it reaches the tumor.
Her article also provided that according to Dr. Judah Folkman, a leading researcher on blood growth factors at the Harvard Medical School, for a long time, physicians have been taught that tumors outgrow their blood supply. According to the article that statement is not true. Tumors compress their blood supply. This compression makes it harder to administer drugs.
The article provides further that most people think a tumor is nothing but a collection of cancer cells. According to Dr. Jain, another researcher, in reality the tumor is only 50 per cent cells. The other half is blood vessels and interstitial space. Interstitial space in a tumor, he said can be likened to the space between marbles packed in a box.
The article further provides that no matter how biological agents are mixed and administered, they must cross a blood-vessel wall and then cross the interstitium to reach their targets, cancer cells. The article continues that every tumor is different and there are different regions within each. Moreover, tumors change daily as they grow and rearrange parts. Most blood vessels inside tumors are highly disorganized as they take tortuous turns and grow peculiar attachments to nearby vessels.
In general, Dr. Jain said, as a tumor grows, its outer region recruits new blood vessels from surrounding normal tissue. It also forms several abnormal blood vessels of its own. As the tumor grows in a confined space, many of the twisted blood vessels near its center are crushed. In turn, the tumor cells near them appear to die, although they grow into active cancer if transplanted in other animals. High pressures build up in these necrotic regions. Both blood vessels and liquid plasma in the interstitial spaces are squeezed. The pressure, therefore, prevents blood-borne molecules, including oxygen, from entering the central tumor areas.
Pressure is not uniform in normal tissue, Dr. Jain said, so a large molecule such as an antibody would reach its target through convection induced by pressure differences. But in the center of a tumor, pressure is uniformly high, blocking convection.
Molecules also migrate by diffusion Dr. Jain said, which is similar to the way a drop of ink spreads in water.
But he indicated that he measured antibody diffusion in tumors and found out it can take days, weeks or months for such large molecules to reach uniform concentration by diffusion in tumors. By then, it may be too late for treatments to do any good.
Finally, the fluid that builds up in the interstitium slowly leaks out of the tumor, he said, washing away molecules trying to reach its center.
In our Canadian Patent Application Serial Number 568,512 we disclose a new formulation suitable for use for treating cancer (for use in conjunction with at least thermotherapy (hyperthermia) and if desired, other modalities (such as chemotherapy or radiation)), the formulation comprising (for example in a pharmaceutically acceptable carrier):
(a) a glucose inhibiting (non-toxic) amount of an agent that blocks the glucose transport protein (active transport molecule in the membrane) of a cell from transporting glucose into the cell, and
(b) an effective (non-toxic) amount of an agent which (i) enhances penetration and transport of agent (a) through the tissue surrounding the various cellular elements, generally known as scar tissue or fibrous reaction around the cancerous tumor, and (ii) alters the penetration characteristics of the tissue surrounding the tumor to permit agent (a) to be transported to the center of the tumor.
We also disclosed a combination and formulation suitable for use for treating cancer, the combination comprising:
(a) a glucose inhibiting (non-toxic) amount to an agent that blocks the glucose transport protein (active transport molecule in the membrane) of a cell from transporting glucose into the cell, and
(b) an effective (non-toxic) amount of an agent which (i) enhances penetration and transport of agent (a) through the tissue surrounding the various cellular elements, generally known as scar tissue or fibrous reaction around the cancerous tumor, and (ii) alters the penetration characteristics of the tissue surrounding the tumor to permit agent (a) to be transported to the center of the tumor.
After the introduction of the formulation or combination comprising agents (a) and (b) to the patient which have the effect of metabolically comprising the cancer cells of the tumor, the tumor and the cancer cells making up the tumor are stressed by at least thermotherapy (hyperthermia). In this regard, when agent (a) is transported into the tumor cells and the tumor cells are stressed, there is an inadequate amount of glucose available to the tumor cells for them to continue to function metabolically. Thus the tumor cell is impaired in its energy supply and dies. We also disclosed in the application a method for the treatment of cancer which method comprises administering (for example in a pharmaceutically acceptable carrier):
(a) a glucose inhibiting (non-toxic) amount of an agent that blocks the glucose transport protein (active transport molecule in the membrane) of a cell from transporting glucose into the cell, and
(b) an effective (non-toxic) amount of an agent which (i) enhances penetration and transporting of agent (a) through the tissue surrounding the various cellular elements, generally known as scar tissue or fibrous reaction around the cancerous tumor, and (ii) alters the penetration characteristics of the tissue surrounding the tumor to permit agent (a) to be transported to the center of the tumor, and subjecting the cancer cells to hyperthermia (thermotherapy)) therapy. In some instances other modalities (for example chemotherapy and/or radiation therapy) may also be employed.
The glucose inhibiting (non-toxic) amount of the agent that blocks the glucose transport protein of a cell from transporting glucose into the cell (in cancer cells there appear to be more than in normal cells) may comprise:
or their analogues including phlorizin glucuronide;
4-deoxy-phloretin-2-D-glucoside and the like.
The effective (non-toxic) amount of the agent which
(i) enhances penetration and transport of agent (a) through the tissue surrounding the various cellular elements generally known as scar tissue or fibrous reaction around the cancerous tumor, and
(ii) alters the penetration characteristics of the tissue surrounding the tumor to permit agent (a) to be transported to the center of the tumor may comprise dimethyl sulfoxide (DMSO), methylsulfonylmethane (MSM) (also called methylsulfone methane) or other carrier transport-type molecules having the characteristics which
(i) enhances penetration and transport of agent (a) through the tissue surrounding the various cellular elements, generally known as scar tissue or fibrous reaction around the cancerous tumor, and
(ii) alters the penetration characteristics of the tissue surrounding the tumor to permit agent (a) to be transported to the center of the tumor.
In the publication
Ontario Medicine,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment of conditions and disease does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment of conditions and disease, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of conditions and disease will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.