Optical waveguide system for a flat-panel display

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S032000, C385S115000, C385S120000

Reexamination Certificate

active

06326939

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains in general to the spatial frequency relationship between the optical elements of a flat-panel display.
2. Description of the Prior Art
Devices for enlarging optical images using optical waveguides are well known. Early devices included bundles of optical fibers that were tapered along their length such that the fibers were larger in cross-section at one end than at the other. To produce an enlarged image, the original image was input into the small end of the fiber bundle. The image that emerged from the large end of the fiber bundle was magnified by a factor equal to the ratio of the diameter of the large end to that of the smaller end. While producing the desired effect, these devices often produced poor quality, distorted images because of the difficulty in producing uniform tapers in the large number of fibers required by the devices.
Another technique for producing enlarged images using optical waveguides involved cutting a bundle of optical waveguides at a bias and redirecting the emergent light in a direction normal to the bias cut. As a result of the bias cut, the image emerging from the bundle of waveguides was magnified in one direction. Glenn, Jr. discloses one such technique in U.S. Pat. No. 4,208,096.
In U.S. Pat. No. 3,402,000, Crawford also discloses a fiber optic image enlarger that employs the bias-cut waveguide bundle technique. The Crawford image enlarger includes a first bundle of optical fibers having a bias cut that magnifies an input image in a first direction. The magnified image is then redirected into a second bundle of optical fibers having a bias cut that magnifies the input image in a second direction. The resultant image, therefore, is magnified in two dimensions.
While successful in producing enlarged images, devices based on the prior art typically exhibit problems originating from the inefficient cooperation between the optical structures. A first problem can result from nonuniform spacing between the optical waveguides or from slight variations in alignment of optical waveguide structures. Normally, manufactured bundles of optical waveguides include a certain amount of nonuniformity in the spacing between the individual waveguides. This nonuniformity generally goes unnoticed when images are transmitted through a single bundle of optical waveguides. When multiple bundles of optical waveguides having similar spatial frequencies are coupled together, however, the nonuniformity in spacing or misalignment of the fibers of each bundle causes Moiré fringe patterns that appear as alternating light and dark areas in the transmitted image.
A second problem, may result from inadequate spatial sampling of the optical elements of each optical structure. Typically, light input image devices include a structure comprising an array of pixels each projecting a portion of the input light image. The maximum resolution state of such a device includes adjacent pixels alternating between light and dark. When the input image device is optically coupled to a bundle of optical waveguides each having a dimension similar to the pixel dimension, any misalignment between the pixels and optical waveguides can significantly degrade the output image. Rather than each adjacent waveguide transmitting alternating light and dark light signals in a one-to-one correspondence with the pixels of the input imaging device, each waveguide will transmit light from a portion of a dark pixel and a portion of an adjacent light pixel. At the far end of the optical waveguides, the light and dark components of the light input to each waveguide merge together. As a result, the resolution of the input image is lost, and the output image appears gray.
While in theory the pixels of the input imaging device could be aligned perfectly with each corresponding optical waveguide to provide accurate mapping and transmission of the input image, in practice such a result is not feasible. Manufacturing of such a device would be extremely difficult and prohibitively costly.
These problems are further compounded in devices, such as the Crawford device, that include multiple light transmission interfaces. In these devices, the product of the light transmission characteristics through each optical structure and at each light transmission interface determines the overall quality of the output image. Therefore, any global nonuniformity in either bundle of waveguides or any misalignment of optical structures at the light transmission interfaces serves to compound the negative effects on the output image.
SUMMARY OF THE INVENTION
The object of the invention is to improve the quality of the output image of a device having a pixelated input imaging device and multiple bundles of optical waveguides used for enlarging the input image.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises an input imaging source for supplying an input image. The input imaging source is coupled to a first array of optical waveguides having an input surface and an intermediate output surface. The intermediate output surface is oriented at an angle with respect to said input surface, and each waveguide of the first array comprises a first major cross-sectional dimension. A first light redirecting layer is disposed adjacent to the intermediate light output surface for redirecting the input image emerging from the first array of optical waveguides into a second array of optical waveguides. The second array has an intermediate input surface disposed adjacent to the light redirecting layer and a light output surface oriented at an angle with respect to the intermediate input surface. Each waveguide of the second array comprises a second major cross-sectional dimension. Finally, a second light redirecting layer, through which the input image is projected, is disposed on the light output surface of the second array.
In the preferred embodiment, the input imaging source comprises pixels having a major planar dimension. Also, the groups of waveguides from both the first and second arrays together form an equivalent waveguide size defined by the relationship:
E
=
D
1
2
+
D
2
2
where E represents the equivalent waveguide size, D
1
represents the first major cross-sectional dimension, and D
2
represents the second major cross-sectional dimension. Preferably, a pixel-to-waveguide ratio between the major planar dimension of the pixels of the input imaging source and the equivalent waveguide size is between about 1.2 to about 4.0.
In a further embodiment of the present invention, all of the first major cross-sectional dimensions of the waveguides of the first array are substantially equal, and all of the second major cross-sectional dimensions of the waveguides of the second array are substantially equal. Furthermore, a cross-sectional ratio of the first major cross-sectional dimension to the second major cross-sectional dimension is at least 1.25.
In yet another embodiment of the present invention, all of the first major cross-sectional dimensions vary randomly about a first mean value dimension, and all of the second major cross-sectional dimensions vary randomly about a second mean value dimension.
In still another embodiment of the present invention, both the first and second arrays of waveguides are square arrays where the waveguides are arranged in a plurality of rows and columns. In this embodiment, the first array of optical waveguides is rotated relatively with respect to the second array of optical waveguides to form a rotation angle defined as the angle formed by the corresponding rows of the first a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical waveguide system for a flat-panel display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical waveguide system for a flat-panel display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical waveguide system for a flat-panel display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572251

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.