Functional poly(phenylene ether)/poly(arylene sulfide)/epoxy...

Synthetic resins or natural rubbers -- part of the class 520 ser – Polymer from at least one nonethylenic monomer having...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S189000, C525S390000, C525S397000, C525S537000

Reexamination Certificate

active

06303708

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to poly(phenylene ether)/poly(arylene sulfide) resin compositions, and more particularly relates to impact modified poly(phenylene ether)/poly(arylene sulfide) resin compositions.
2. Description of the Related Art
Poly(phenylene sulfide)/poly(phenylene ether) blends are generally known. Such blends however have typically lacked the desired level of one or more mechanical properties. Property improvements have been obtained by the addition of an agent such as an aliphatic polycarboxylic acid or a compound having a two-fold or three-fold carbon-to-carbon bond and a carboxylic acid, etc., see, for example, Dekkers, European Patent Application 341,422 published Nov. 15, 1989 which further discloses that partially hydrogenated styrene-(ethylene/butylene)-styrene triblock copolymers may be contained in the composition, and the reference further discloses premixing the poly(phenylene ether) resin and the agent in an extruder. In order for such compositions to be suitable as materials for automotive parts, they must exhibit enhanced physical properties and specifically they must exhibit high impact strength properties.
Accordingly, there is a need to provide poly(phenylene ether)/poly(arylene sulfide) resin blends which exhibit enhanced impact properties.
SUMMARY OF THE INVENTION
The present invention involves a functional poly(phenylene ether) resin, poly(arylene sulfide) resin (herin after called “PPS”), epoxy functional alpha-olefin elastomer, elastomeric block copolymer, metal salt composition and process for making the same. Preferably the composition is made by precompounding a poly(phenylene ether) resin (herein after called “PPE”) with a polyfunctional compatibilizer such as, for example, citric acid or fumaric acid and with the elastomeric block copolymer in order to prepare a premix comprising a functionalized PPE, and then further compounding the premix with the PPS, epoxy functional alpha-olefin elastomer and metal salt such as zinc stearate in order to obtain the final composition exhibiting the enhanced levels of impact strength. The compositions are useful for making automotive parts in that the preferred compositions exhibit the combined properties of low coefficient of thermal expansion, low moisture absorption, high heat distortion temperature, good chemical resistance, long term heat stability, and high levels of impact strength.
DETAILED DESCRIPTION OF THE INVENTION
The compositions contain a functional PPE, PPS, epoxy functional alpha-olefin elastomer, elastomeric block copolymer, and a metal salt. The resulting compositions exhibit enhanced impact strengths over simple impact modified functional PPE/PPS compositions. By premixing a functional compound with PPE and the elastomeric block copolymer, a premix containing a functional PPE with the elastomeric block copolymer can be obtained, and then by mixing the premix with the PPS, epoxy functional alpha-olefin elastomer and metal salt, a composition exhibiting a desirable morphology and enhanced impact strength can be obtained.
The PPE employed in the present invention are known polymers comprising a plurality of structural units of the formula (I):
wherein in each structural unit independently, each Q
1
is independently halogen, primary or secondary lower alkyl (i.e., alkyl containing up to 7 carbon atoms), phenyl, haloalkyl, aminoalkyl, hydrocarbonoxy, or halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q
2
is independently hydrogen, halogen, primary or secondary lower alkyl, phenyl, haloalkyl, hydrocarbonoxy or halohydrocarbonoxy as defined for Q
1
. Most often, each Q
1
is alkyl or phenyl, especially C
1-4
alkyl, and each Q
2
is hydrogen.
Both homopolymer and copolymer PPE are included. The preferred homopolymers are those containing 2,6-dimethyl-1,4-phenylene ether units. Suitable copolymers include random copolymers containing, for example, such units in combination with 2,3,6-trimethyl-1,4-phenylene ether units. Also included are PPE containing moieties prepared by grafting vinyl monomers or polymers such as polystyrenes and elastomers, as well as coupled PPE in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in known manner with the hydroxy groups of two PPE chains to produce a higher molecular weight polymer.
The PPE generally has a number average molecular weight within the range of about 3,000-40,000 and a weight average molecular weight within the range of about 20,000-80,000, as determined by gel permeation chromatography. Its intrinsic viscosity is most often in the range of about 0.15-0.6 dl./g., as measured in chloroform at 25° C.
The PPE are typically prepared by the oxidative coupling of at least one monohydroxyaromatic compound such as 2,6-xylenol or 2,3,6-trimethylphenol. Catalyst systems are generally employed for such coupling; they typically contain at least one heavy metal compound such as a copper, iron, manganese or cobalt compound, usually in combination with various other materials.
Particularly useful PPE for many purposes are those which comprise molecules having at least one aminoalkyl-containing end group. The aminoalkyl radical is typically located in an ortho position to the hydroxy group. Products containing such end groups may be obtained by incorporating an appropriate primary or secondary monoamine such as di-n-butylamine or dimethylamine as one of the constituents of the oxidative coupling reaction mixture. Also frequently present are 4-hydroxybiphenyl end groups, typically obtained from reaction mixtures in which a by-product diphenoquinone is present, especially in a copper-halide-secondary or tertiary amine system. A substantial proportion of the polymer molecules, typically constituting as much as about 90% by weight of the polymer, may contain at least one of said aminoalkyl-containing and 4-hydroxybiphenyl end groups.
It will be apparent to those skilled in the art from the foregoing that the PPE contemplated for use in the present invention include all those presently known, irrespective of variations in structural units or ancillary chemical features.
One way to prepare the functionalized PPE is to react the PPE with at least one polyfunctional compatibilizer compound. One class of compounds that is useful for this purpose comprises materials that have both:
(a) a carbon-carbon double bond or a carbon-carbon triple bond; and
(b) a carboxylic acid, anhydride, hydroxy, epoxy, trialkyl ammonium carboxylate, amino group or derivatives of such groups.
Typical examples of materials that fit these criteria for preparing appropriately functionalized PPE include maleic anhydride, fumaric acid, maleimides such as N-phenylmaleimide and 1,4-phenylene-bis-methylene-&agr;,&agr;′-bismaleimide, maleic hydrazide, methylnadic anhydride, fatty oils (e.g., soybean oil, tung oil, linseed oil, sesame oil), unsaturated carboxylic acids such as acrylic, crotonic, methacrylic acid and oleic acid, unsaturated alcohols such as allyl alcohol and crotyl alcohol and unsaturated amines such as allylamine and trialkyl amine salts of unsaturated acids such as triethylammonium fumarate and tri-n-butylammonium fumarate. Such typical reagents for preparing a useful functional PPE are described in U.S. Pat. Nos. 4,315,086, 4,755,566, and 4,888,397, which are incorporated herein by reference.
It is sometimes advantageous to use an initiator in the preparation of the functionalized PPE with the olefinic compound. Suitable initiators for use in the current invention include free radical initiators generally known to the art Specific initiators include various peroxides and hydroperoxides. Specific examples include benzoyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy) hexane, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 and cumene peroxide, with 2,5,-dimethyl-2,5-di(t-butylperoxy)hexyne-3 being preferred. When it is used, the amount of initiator used can vary of from about 0.05

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functional poly(phenylene ether)/poly(arylene sulfide)/epoxy... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functional poly(phenylene ether)/poly(arylene sulfide)/epoxy..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional poly(phenylene ether)/poly(arylene sulfide)/epoxy... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.