Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1998-09-16
2001-10-30
Maki, Steven D. (Department: 1733)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S280000, C156S289000, C427S140000, C427S393000
Reexamination Certificate
active
06309492
ABSTRACT:
The present invention relates to a method for coating wood panel laminate or composite panel products with a pumpable or sprayable polymer or plastic coating to improve the durability, strength and appearance of the product, and to a laminated or composite wood product that can be made in this way.
BACKGROUND OF THE INVENTION
Wood panel laminates and composite wood panel products, such as, for example, plywood, laminated veneer lumber (LVL), oriented strand board (OSB), and particle board (PB), are widely used in the building and construction process and in the fabrication of a wide variety of building components and structures, including furniture, cabinetry, and boxes, large and small. These laminate and composite products offer improved strength, unique dimensional or fabrication characteristics, and greater availability and versatility compared to natural solid wood or lumber, while costing significantly less than natural solid wood and requiring less labor to prepare and make ready for use by consumers.
One significant drawback to the use of many of these manufactured wood panel products, however, is that they have a rough, industrial appearance and are generally less cosmetically attractive than solid wood. Because these products are usually mass produced from veneers of wood, strands and flakes of assorted wood fiber, or chips and particles of wood randomly bonded together, the face and edge surfaces of the products are usually coarse, grainy, rough, and include imperfections such as splits, gaps, stained wood, discolored resin and knots, which usually detract from the cosmetic appearance of the product, and limit functional uses and fabrication of derivative products.
Another disadvantage is that the rough gaps and coarse, flashy raised grain of many types of wood laminate and composite panels products show or “telegraph” through many types of conventional cosmetic appearance improving or protective coatings or overlays, such as thin veneer, paper and vinyl sheet laminating layers and paint. One common way to try to improve the surface appearance of laminate panel wood products, especially veneer and laminated products, such as plywood and LVL, is to use a procedure known as “plug and touch sanding.” In this procedure, each surface layer of veneer is inspected for large knots or imperfections. Prior to laminating, an operator removes these imperfections with a hydraulic punch, cutting out the imperfection in a preselected shape. The holes thus formed are filled with wooden plugs which have been pre-cut to the same shape as the hole. After laminating, the surface layers of the resulting wood panel are inspected again, and rough spots, and the plugs themselves, are sanded to help smooth the surface of the product. Any remaining defects in the surfaces of the laminated product can then be removed by using a router to create a depression where the defect was, and then adding a putty or patching compound by hand prior to a final sanding of a panel. Each of these procedures is labor intensive, time consuming and expensive. The resulting product, while improved, is still not suitable for many applications for which an attractive appearance or a smooth surface is desired.
Wood products manufactured in the above manner are sometimes used as, for example, concrete form boards for poured concrete. Surface imperfections are telegraphed onto the surface of the finished concrete. Typically, these concrete form products must additionally undergo a process to apply a clear, defect-free hardwood overlay to the substrate to prevent substrate defects from telegraphing. Normally, a sheet of high quality hardwood veneer which is free of large imperfections is laminated to a very thin, smooth, water-resistant, resin impregnated paper called a Medium Density Overlay (MDO) and attached using a press in the normal laminate pressing process, or is glued onto the laminated wood product in a roll coating process after the laminate pressing is complete. Thus, the combination of a hardwood and MDO overlay provides a smooth, clean surface by which the MDO contacts the wet cement so that no imperfections remain in the surface of the wood laminate product and, thus, no defects are be telegraphed to the surface of the finished concrete. This process, however, is labor and material intensive and significantly increases the cost of concrete form board due to the expense of the hardwood overlay and the MDO resin paper overlay.
In many other applications, conventional wood products suffer from the additional disadvantage that they are water permeable, which can result in staining, swelling, dimensional distortion, deterioration or even disintegration.
In view of the above, it should be appreciated that there is a need for a method and product that improves the performance and appearance of wood laminate and composite wood products that is inexpensive, labor efficient, and results in a continuous homogenous smooth surface that is substantially free of imperfections, is suitable for refabrication, painting or other cosmetic enhancement, and does not materially reduce the structural strength or dimensional stability of the product, but does increase resistance to water damage. The present invention satisfies these and other needs and provides further related advantages.
SUMMARY OF THE INVENTION
One aspect of the present invention resides in a method for coating wood laminate or composite products with a pumpable or sprayable polymer or plastic coating. The process may include some or all of the following steps: (1) applying a thermal setting adhesive to a plurality of sheets of wood veneer or mixing the thermal setting adhesive with wood fragments; (2) heating the wood veneer or wood fragments to a temperature above ambient temperature and applying pressure to the wood veneer or wood fragments, thereby causing the wood to bond as a result of the thermal setting adhesive, creating a wood substrate; (3) applying a flowable but thixotropic polymer coating material to one or more surfaces of the wood substrate before the wood substrate cools to ambient temperature; (4) distributing the polymer coating material smoothly across one or more surfaces of the wood substrate such that holes and imperfections in the surface are filled and a smooth continuous surface is created; and (5) allowing the polymer coating material to bond to one or more surfaces of the wood substrate and cure to form one or more homogenous hard, smooth surfaces over the substrate. The process may also include the steps of coating the partially cured or gelled polymer with a release agent such as sawdust or sanding dust to prevent blocking of tacky panel surfaces and then, after the polymer has fully cured and hardened, sanding the solid hard surface to smooth to remove the release agent.
Preferably, the flowable but thixotropic polymer is a reaction spray elastomer (RSE) or pumpable elastomer. RSEs, which are known in the industry, include fast curing, solventless polyurethane, polyurea, polyester and hybrid blends. RSEs are 100% solids and consequently solvent-free. They have a cure time of 15 to 60 seconds, which reduces the labor expended on each wood substrate to be coated, and speeds production, therefore improving productivity of manufacturing facilities using the process. An added advantage of this solvent-free characteristic of RSEs is that the elimination of solvents helps manufacturing facilities using the above-referenced process to meet strict environmental standards relating to air quality. A still further advantage of this characteristic is that the RSE's have minimal shrinkage during curing, thus preventing an RSE coating applied to only one side of a wooden substrate from causing bowing or warping of the substrate.
An important feature of the method identified above is that it uses laminate or composite heat presses, which are common in the industry, and synergistically takes advantage of the residual heat which remains in a newly fabricated laminate or composite product to aide in the bonding and curing of the polymer coat
Christie Parker & Hale LLP
Maki Steven D.
LandOfFree
Polymer fill coating for laminate or composite wood products... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymer fill coating for laminate or composite wood products..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymer fill coating for laminate or composite wood products... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2564734