Detection of dysplastic or neoplastic cells using anti-MCM5...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C436S064000, C530S387700, C530S387900, C530S388800

Reexamination Certificate

active

06303323

ABSTRACT:

The present invention relates to assessment of cells in a sample of tissue, cells or fluid with a view to detecting cellular growth abnormality, particularly potentially (or actually) cancerous cells. Aspects of the present invention are particularly useful in screening samples such as cervical smears from women to detect those whose cervical cells are abnormal. The invention is also applicable to assessment of cells in other tissue samples, including breast, as demonstrated experimentally herein. Samples found to be abnormal may be examined in more detail and the condition of cells in the tissue investigated further. Identification of a malignant or pre-malignant condition may be followed by appropriate treatment following more extensive diagnostic procedures.
The present invention is based on the surprising discovery that specific binding molecules directed against particular proteins of the preinitiation complex of DNA replication can be used to detect abnormal cells. Especially useful in the present invention are binding molecules directed against Cdc6. Also especially useful are binding molecules directed against MCM proteins, particularly MCM5. Experimental evidence included herein shows that specific binding molecules directed against Cdc6, and also those against MCM2, MCM3, MCM4, MCMS, MCM6 or MCM7 are much more effective in marking cellular growth abnormality in tissue samples than antibodies against PCNA and Ki67. A priori one would have expected Cdc6 and the MCM's to give similar results as Ki67 and PCNA, since all these proteins can be considered “proliferation markers”. On cervical samples subject to antigen retrieval (pressure cooking or autoclaving), experimental results below show that in fact results obtained are similar for all these, but there is clear difference on cervical smears and frozen samples. Such samples, of primary interest for screening purposes, are not robust enough to be subject to pressure cooking. Of particular interest in the context of screening are the very strong and clear results obtained with assessment of cervical samples using anti-Cdc6 or anti-MCM binding molecules, showing high-level staining of abnormal cells, and full-thickness staining in LSIL samples. This indicates usefulness in assessment of smear samples taken from the cervical epithelial surface—and indeed this is verified experimentally herein. Full thickness staining is also seen for HSIL samples.
Experimental assessment of abnormality in breast tissue, urine, blood and serum confirms generality of aspects of the present invention. Further evidence is provided by the use of the same antibodies in detection of the presence of dysplastic or neoplastic cells in body fluids by biochemical methods that can be automated. Examples demonstrated herein include detection of bladder cancer by analysis of urine and detection of both leukaemia and lymphoma by analysis of blood. A suitable method for such analysis is Dissociation Enhanced Lanthanide Fluorescence Immunoassay, “DELFIA”. Also included is demonstration of detection of sarcoma and carcinoma cases by DELFIA on blood.
The cervical epithelium is essentially composed of two distinct cell types: the squamous epithelium and the columnar epithelium, each of which is located in an anatomically distinct region of the tissue. The squamous epithelium is located at the exterior aspect (the ectocervix) of the cervical opening (os), while the columnar epithelium extends into the endocervical canal (the endocervix). These two distinct epithelial cell types come into contact in the vicinity of the cervical os, at the squamo-columnar junction. The squamo-columnar junction is of clinical importance as it is the region where the majority of malignancies arise. For diagnostic validity, a cervical smear sample should include cells from this region. In order to ensure that this has been achieved, a smear should contain columnar as well as squamous epithelial cells.
Most cervical tumours arise at the squamo-columnar junction from the squamous epithelium, which is a multilayered dynamic stem cell system under constant renewal. The stem cell compartment itself is located adjacent to the basement membrane within the basal cell layer. Stem cell division gives rise to parabasal, intermediate, and superficial cell derivatives. These are conventionally defined in terms of both their characteristic morphology and location within the squamous epithelium. The transition from basal cells located in the deepest layer of the squamous epithelium, to superficial cells at its surface is associated with progressive differentiation and a loss of proliferation until superficial squamous epithelial cells at the cervical surface are terminally differentiated.
In dysplasia, there is increased cellular proliferation with a reduction in differentiation of cells as they progress through the squamous epithelium. Typically, for convenience in the first instance, cervical screening involves assessment of smears taken from the surface of the epithelium, the cytopathologist looking for abnormalities at the surface representative of reduced differentiation as a result of dysplasia.
At the late foetal stage, during adolescence and in pregnancy columnar epithelium is replaced at the junction by squamous epithelium by a process of metaplasia. Metaplastic squamous cells which replace columnar cells are particularly vulnerable to carcinogens. Normal metaplasia should not be confused with abnormal dysplasia within the squamous epithelium, and it can be important in screening contexts to be able to distinguish between metaplastic and dysplastic cells.
Despite an intensive and expensive national screening programme, carcinoma of the cervix is the eighth most common malignancy of women in the UK and the most common malignancy in women under 35 years of age (Cancer Research Campaign,
Cancer of the cervix uteri.
1994, CRC: London). In the developing world it is the most common malignancy and the leading cause of death in women between the ages of 35-45 years, with an estimated 437,000 new cases each year (Cancer Research Campaign,
Cancer—world perspectives,.
1995, CRC: London).
The majority of cases represent squamous cell carcinoma (SCC) and are strongly associated with infection with ‘high-risk’ types of human papillomavirus, such as 16, 18 and 31 (Park, et al. Cancer, 1995, 76 (10 Suppl.): p. 1902-13). Cervical carcinoma is amenable to prevention by population screening, as it evolves through well-defined non-invasive ‘intraepithelial’ stages (Wright, et al.
Precancerous lesions of the cervix, in Blaustein's pathology of the female genital tract.
R. J. Kurman, Editor. 1994, Springer-Verlag: New York. p. 229-78). Squamous intraepithelial abnormalities may be classified using 3 tier (CIN) or 2 tier (Bethesda) systems. Different histological abnormalities broadly correlate with the type of infecting HPV and with the DNA ploidy, clonality and natural history of the lesion. As classified by the Bethesda system, low grade squamous intra-epithelial lesions (LSIL), corresponding to CIN1 and cervical HPV infection (HPVI) generally represent productive HPV infections, with a relatively low risk of progression to invasive disease (Wright and Kurman.
A critical review of the morphological classification systems of preinvasive lesions of the cervix: the scientific basis for shifting the paradigm, in Papillomavirus reviews: current research on papillomaviruses,
C. Lacey, Editor. 1996, Leeds University Press: Leeds). High-grade squamous intra-epithelial lesions (HSIL), corresponding to CIN2 and CIN3, show a higher risk of progression than CIN1 (LSIL) though both are viewed as representing a potential precursor of malignancy. Although it is possible to estimate the approximate risk of malignancy for each category of intra-epithelial lesion, it is currently not possible to determine the approximate likelihood of progression for an individual case.
In 1943, Papanicolau and Trout introduced the Pap smear test to detect precursors of cervical cancer in women. This is a cytological scre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection of dysplastic or neoplastic cells using anti-MCM5... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection of dysplastic or neoplastic cells using anti-MCM5..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of dysplastic or neoplastic cells using anti-MCM5... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.