Stereo pulse oximeter

Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06334065

ABSTRACT:

BACKGROUND OF THE INVENTION
The measurement of oxygen delivery to the body and the corresponding oxygen consumption by its organs and tissues is vitally important to medical practitioners in the diagnosis and treatment of various medical conditions. Oxygen delivery, the transport of oxygen from the environment to organs and tissues, depends on the orchestration of several interrelated physiologic systems. Oxygen uptake is determined by the amount of oxygen entering the lung and the adequacy of gas exchange within the lung. This gas exchange is determined by the diffusion of oxygen from the alveolar space to the blood of the pulmonary capillaries. Oxygen is subsequently transported to all organs and tissues by blood circulation maintained by the action of the heart. The availability of oxygen to the organs and tissues is determined both by cardiac output and by the oxygen content in the blood. Oxygen content, in turn, is affected by the concentration of available hemoglobin and hemoglobin oxygen saturation. Oxygen consumption is related to oxygen delivery according to Fick's axiom, which states that oxygen consumption in the peripheral tissues is equal to oxygen delivery via the airway.
Oxygen delivery and oxygen consumption can be estimated from a number of measurable parameters. Because of the diagnostic impracticalities of measuring oxygen uptake and cardiac output, oxygen delivery is typically assessed from the oxygen status of arterial blood alone, such as arterial oxygen partial pressure, P
a
O
2
, and arterial oxygen saturation, S
a
O
2
. P
a
O
2
represents the relatively small amount of oxygen dissolved in the blood plasma. S
a
O
2
represents the much larger amount of oxygen chemically bound to the blood hemoglobin. Oxygen consumption is typically assessed from the oxygen status of mixed venous blood, i.e. the oxygen saturation of blood from the pulmonary artery, S
v
O
2
, which is used to estimate the O
2
concentration of blood returning from all tissues and organs of the body. These parameters can be measured by both invasive and non-invasive techniques, except S
v
O
2
, which requires an invasive measurement.
Invasive techniques include blood gas analysis using the in vitro measurement of extracted arterial or venous blood, drawn with a syringe and needle or an intervascular catheter. Arterial blood is commonly obtained by puncturing the brachial, radial or femoral artery. Venous blood can be obtained from an arm vein, but such a sample reflects only local conditions. To obtain mixed venous blood, which represents the composite of all venous blood, a long catheter is typically passed through the right heart and into the main pulmonary artery from a peripheral vein. Extracted blood gas analysis utilizes blood gas machines or oximeters. A blood gas machine measures the partial pressure of oxygen, PO
2
, using a “Clark electrode” that detects the current generated by oxygen diffusing to a sealed platinum electrode across a gas permeable membrane. An oximeter measures the oxygen saturation, SO
2
, of oxygenated and deoxygenated hemoglobin using spectrophotometry techniques that detect the differential absorption of particular wavelengths of light by these blood components.
Invasive monitoring also includes the in vivo monitoring of blood gas via a catheter sensor inserted into an artery or vein. Miniaturization of the Clark electrode allows placement of the electrode in a catheter for continuous measurement of PO
2
. A fiber optic equipped catheter attached to an external oximeter allows continuous measurement of oxygen saturation. Because of risks inherent in catheterization and the promotion of blood coagulation by certain sensors, these techniques are typically only used when vitally indicated.
Non-invasive techniques include pulse oximetry, which allows the continuous in vivo measurement of arterial oxygen saturation and pulse rate in conjunction with the generation of a photoplethsymograph waveform. Measurements rely on sensors which are typically placed on the fingertip of an adult or the foot of an infant. Non-invasive techniques also include transcutaneous monitoring of PO
2
, accomplished with the placement of a heated Clark electrode against the skin surface. These non-invasive oxygen status measurement techniques are described in further detail below.
SUMMARY OF THE INVENTION
Prior art invasive oxygen assessment techniques are inherently limited. Specifically, in vitro measurements, that is, blood extraction and subsequent analysis in a blood gas machine or an oximeter, are non-simultaneous and non-continuous. Further, in vivo measurements through catheterization are not casual procedures and are to be particularly avoided with respect to neonates. Prior art noninvasive techniques are also limited. In particular, conventional pulse oximeters are restricted to measurement of arterial oxygen saturation at a single patient site. Also, transcutaneous monitoring is similarly restricted to the measurement of an estimate of arterial partial pressure at a single patient site, among other limitations discussed further below.
The stereo pulse oximeter according to the present invention overcomes many of the limitations of prior art oxygen status measurements. The word “stereo” comes from the Greek word stereos, which means “solid” or three-dimensional. For example, stereophonic systems use two or more channels to more accurately reproduce sound. The stereo pulse oximeter is similarly multi-dimensional, providing simultaneous, continuous, multiple-site and multiple-parameter oxygen status and plethysmograph (photoplethysmograph) measurements. The stereo pulse oximeter provides a benefit in terms of cost and patient comfort and safety over invasive oxygen status estimation techniques. The multi-dimensional aspects of this invention further provide oxygen status and plethysmograph measurements not available from current noninvasive techniques. In addition, the stereo pulse oximeter allows the isolation of noise artifacts, providing more accurate oxygen status and plethysmograph measurements than available from conventional techniques. The result is improved patient outcome based on a more accurate patient assessment and better management of patient care.
In one aspect of the stereo pulse oximeter, data from a single sensor is processed to advantageously provide continuous and simultaneous multiple-parameter oxygen status and plethysmograph measurements from a particular tissue site. This is in contrast to a conventional pulse oximeter that provides only arterial oxygen saturation data from a tissue site. In particular a physiological monitor comprises a sensor interface and a signal processor. The sensor interface is in communication with a peripheral tissue site and has an output responsive to light transmitted through the site. The signal processor is in communication with the sensor interface output and provides a plurality of parameters corresponding to the oxygen status of the site, the plethysmograph features of the site or both. The parameters comprise a first value and a second value related to the peripheral tissue site. In one embodiment, the first value is an arterial oxygen saturation and the second value is a venous oxygen saturation. In this embodiment, another parameter provided may be the difference between arterial oxygen saturation and venous oxygen saturation at the tissue site. The venous oxygen saturation is derived from an active pulse generated at the site. The signal processor output may further comprise a scattering indicator corresponding to the site, and the sensor interface may further comprise a pulser drive, which is responsive to the scattering indicator to control the amplitude of the active pulse. One of the parameter values may also be an indication of perfusion.
In another aspect of the stereo pulse oximeter, data from multiple sensors is processed to advantageously provide continuous and simultaneous oxygen status measurements from several patient tissue sites. This is in contrast to a conventional pulse oximeter that processes

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stereo pulse oximeter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stereo pulse oximeter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stereo pulse oximeter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.