Wet granulation method generating sulfur granules

Chemistry: physical processes – Physical processes – Agglomerating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C071S064050

Reexamination Certificate

active

06331193

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a pan granulation method for pan granulating pellets or granules and more particularly, the present invention relates to a wet granulation method for granulating fertilizer and other materials into industrially useful pellets or granules.
BACKGROUND OF THE INVENTION
One of the greatest limitations existing in the granulation art is centered on the fact that known processes require a seeding agent in order to achieve the proper conditions for material accretion to result in a pellet or granule. By making use of a seed, the resulting granule is adversely affected in two key properties; roundness and cross sectional uniformity. Typically, seeding material is not round and as the precursor particle, the result is irregular initial feedstock accretion which, in turn, forms an out-of-round particle upon which further material accretes. A further detriment from this results in terms of nonuniform particle density.
Methodology is required for synthesizing a granule in the absence of seed material and which is round, tightly packed with a uniform homogeneous cross section and capable of eliminating hazards associated with fertilizer granule production.
One of the latest issued patents in the art to which the present invention relates is U.S. Pat. No. 5,460,765, issued to Derdall et al., Oct. 24, 1995. The reference teaches a process for pan granulating a particulate material. Based on the teachings of the Derdall et al. reference, a final particle size distribution that is achievable by practicing the invention is between about −5 mesh to about +10 mesh. In order to initiate the process, the Derdall et al. process is limited to the introduction of a seeding material typically between about −14 mesh and +28 mesh. This is required in order to control the granule growth and as indicated in the Derdall et al. disclosure, seed minimizes mutual agglomeration and results in high yields being obtained. The Derdall et al. reference further indicates that the proper sizing of the seed is fundamental to the operation of the process for granulation in order to have product yields exceed 90%. Reference is made in the disclosure that a seed core in the range of −14 mesh to +35 mesh is required in order to achieve a steady state and maintain uniform size distribution of between −8 mesh to +6 mesh.
The Derdall et al. process, although a meritorious procedure, did not recognize the limitations of employing a seeding agent or the need for controlling the dust generated during granulation which not only creates an unhealthy environment for workers, but more seriously, results in a potentially explosive environment. This is evident from the teachings of Derdall et al., particularly at column 3, beginning at line 24, wherein it is stated:
“It may be more difficult to keep the granulation steady or stable with fine seed, such as −35 mesh.”
The difficulty to which the Derdall et al. disclosure alludes is directed to cycling which is an inherent problem with pan granulation processes. If the size distribution of the seeding agent is not constant, then the process will not stabilize and effectively “cycles” as is known to those skilled in this art. The result of this is that larger formed granules on the pan effectively destroy the smaller particles. This, of course, defeats the purpose of the pan granulation to generate particles.
Furthermore, at line 36 in column 3, the disclosure indicates that:
“Fine seed sizes can be used, such as +35 mesh, but a point is reached where over-seeding or nucleation occurs easily and causes the final product yield to drop down.”
It is also indicated at column 3, beginning at line 45 that:
“Seed material in the range of 20 mesh is the best single point for each of control and uniformity of product size distribution . . . ”.
As is known, the larger the mesh numerical value the smaller the micron size of the particle. The following mesh sizes correspond to the stated micron sizes:
Approximate
Mesh Size
Micron Size
12
1680
16
1190
20
840
30
590
40
420
100
149
200
74
Based on the teachings of the Derdall et al. disclosure, mesh sizes greater than +35 cause potential nucleation problems and result in a final product yield to decrease. With the technology disclosed, infra, it has been found that by using a fine powder of between −35 mesh to ±150 mesh, that a superior quality product can be formed in high yield and typically in the range of a greater that 90% yield. When the above passage regarding Derdall et al. is considered, it is clear that Derdall et al. effectively contradict what the technology set forth herein has found to be particularly successful.
In the present application the size distribution of the nucleating material is between −35 mesh and +150 mesh which corresponds to micron size less than 590 &mgr;m and 105 &mgr;m, respectively. Nowhere in the prior art is a powdered nucleating agent in this size distribution discclosed for the purpose of forming a uniform granule in the size distribution of −8 mesh to +4 mesh. Advantages have been ascribed to this process and one of the most attractive advantages is that the granule or pellet has an enormous break strength and a uniform cross section. It has been found by practicing the present invention, that break strengths in the range of 1 to 4 kgs or greater have been achieved.
In the Derdall et al. disclosure, at column 3, beginning at line 33 it is stated:
“Seed of large size forms granules of very poor strength.”
If one considers these teachings in light of the size of the nucleating agent provided herein, the admissions made in the Derdall et al. disclosure would clearly go against the appeal of using a seeding agent in the size range as clearly taught by Derdall et al. The instruction in Derdall et al. indicates an ideal seeding agent size is 20 mesh (supra); the instant application uses a powder having a particle size between 75-750% smaller than Derdall et al. and yet achieve very desirable results.
In Statutory Invention Registration H1070, authored by Harrison et al., Jul. 7, 1992, a method for granulating potash materials is disclosed. The process involves the conversion of particulate potassium sulfate or potassium chloride by agglomeration using a conventional rotary drum granulator, pan granulator or other conventional granulating device.
In the disclosure of this document, there are no specific teachings regarding the elimination of a seeding agent, feedstock size or other important factors related to process control in order to generate superior quality granules having commercial viability. Further, the process clearly is an agglomeration process. It is known that agglomeration typically involves the aggregation of colloidal particles suspended in a liquid into clusters or flocs. These clusters or flocs have varying degrees of interstices and are loosely bound (
Hawley's Condensed Chemical Dictionary, eleventh edition,
1987).
As a particularly advantageous feature of the present invention, the methodology herein facilitates sulfur granulation. With the effectiveness of air pollution regulations, it has now become necessary to augment the soil with sulfur due to deficiencies. As is generally known in agricultural science, sulfur fertilization increases crop yield and quality and further has an effect on nitrogen processing by plant matter. This processing is, in turn, related to protein synthesis, nitrogen fixation, photosynthesis and disease resistance.
Currently, sulfur pelletizing or granulation processes proceed according to dry synthesis methodology. This is extremely hazardous since sulfur, particularly sulfur dust, is explosive and difficult to handle. In view of these serious limitations, the field is in need of a viable and safe granulation process. The present technology set forth herein delineates a nonhazardous method for granulating sulfur, customizing particle size as well as additive addition to produce sulfur particles capable of slow relea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wet granulation method generating sulfur granules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wet granulation method generating sulfur granules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wet granulation method generating sulfur granules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.