Routable high-density interfaces for integrated circuit devices

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified configuration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S774000, C257S786000, C257S792000, C257S698000, C257S690000, C257S737000, C257S738000, C257S780000, C361S772000

Reexamination Certificate

active

06310398

ABSTRACT:

BACKGROUND OF THE INVENTION
Modem interfaces for Integrated Circuit (IC) packages, chips, and other devices have ever-increasing terminal densities. Many modem IC devices have so many terminals so tightly clustered that it becomes difficult to construct mutually-segregated conductors to connect carrier lines to each terminal. Signal-carrying terminals and lines are particularly burdensome, since they must be segregated from each other as well as from power and ground lines. Signal lines on an IC device or carrier must have sufficient electrical isolation from other conductors that undesired coupling and leakage paths are avoided.
Terminals in a pattern are principally described by their locations (i.e., of the center point) and their shape (typically square or roundish, and ring-shaped for metal-lined through holes). Each may be coupled to other terminals in the same plane (e.g., a via coupled to a pad). Depending on the structure of circuitry connecting to a set of terminals off-plane, terminals may be categorized as no-connects, power terminals, ground terminals, and signal terminals for connecting to signal lines. The terminal configuration of a pattern is typically repeated in two or more parallel layers, each terminal in each layer coupling to a corresponding terminal on the parallel layer(s).
In this document, an “interface” is a configuration of conductors and dielectrics arranged to provide electrical coupling to an IC device. An interface generally comprises an inward routing (toward the device) and an outward routing (away from the device) in directions parallel to a reference plane. Most typically, routing on an IC device and the carrier on which it is mounted have a significant cost and technology differential. For this reason, routability of an interface in one direction (i.e., inward or outward) has a much larger cost impact on the system than routability in the other. Despite this, few interface designs to date depart from fully dense terminal grids with uniform circumferential spacing. These interfaces do not dislocate terminals but provide routability in less desirable ways such as adding layers.
A “pattern” of terminals most commonly comprises substantially all terminals on a surface of one given type, so terms like “via pattern” and “bond pad pattern” are customary. “Routability” of a pattern or inter-terminal zone refers to the context-dependent technical possibility of positioning routing lines so that all signals may escape (inward or outward) from a given pattern. The context of the routing comprises the number of routing layers, the routing line widths and clearances, the terminal sizes and required clearances, the shielding scheme, protections against ground bounce, and other design constraints known in the art.
Commonly used interface schemes for IC packages include Pin Grid Array (PGA), Ball Grid Array (BGA), and Land Grid Array (LGA). PGA packages have an array of pins that are inserted into through-hole pads in a Printed Circuit Board (PCB). BGA packages have an array of pads and are mounted by soldering these pads on the package directly to surface pads on the mount side of the PCB. LGA packages have an array of metal stubs and are mounted to the PCB in a clamp with a compressible interposer material placed between the package and the PCB. For PGA, BGA, and LGA packages the patterns of pads on the PCB (and in the case of LGA—the conductive pattern in the interposer) match the pattern of the pins or pads on the package. These package types can usually interface with a socket also, such as for testing.
IC dies typically connect to the substrate within the IC package using either wire bond or Flip-Chip technology. Flip-Chip is used for high pin count IC dies. The “pins” on a Flip-Chip die are called bump pads. As with the package array technologies, there is a matching pattern of pads on the package substrate. Interconnect on the package substrate is typically used to connect the pads on the substrate (connected directly to the IC die) to the pins, pads, or stubs on the surface of the package that gets inserted, soldered, or pressed to the PCB.
Most PGA, BGA, and LGA arrays use a square or staggered “gridded” terminal pattern. As the number of pins in IC's increase and with the need to keep these packages small, the spacing between package pins can be as small as 0.5 mm. Since these arrays can have as many as 60 pins on each side and because PCB design rules have minimum trace widths and clearances of 3-4 mils, typically, many PCB signal layers are required to be able to interconnect to the pins of the package. Line, terminal, and dielectric width rules exemplify conventional Design Rules used in the art to confirm a design's quality before construction. PCB designers assure compliance with Design Rules with software tools called Design Rules Checkers (DRC's). See U.S. Pat. Nos. 5,634,093 and 4,768,154. In
FIG. 1
of the former patent, Design Rule File 2c has rules for clearances between various object pairings, and conformity of a given layout is confirmed by Wiring Pattern Checking Unit
5
. In fact, DRC's can readily confirm that a given pattern complies with any requirement, criterion, or preference stated with sufficient particularity. This simplifies the pattern designer's task to a mere repositioning of terminals that cause a violation of a Design Rule.
To enable routing in highly dense IC packages, micro-via, blind via, buried via, staggered via, and other technologies have become more common. Similarly, additional layers in IC package substrates are required for interconnections to flip-chip dies. Technologies such as these substantially increase the cost of carrier manufacture, compromising product yields, performance, and reliability. The present invention allows the design of interfaces for high pin count IC devices such that the interface footprints can be small (typically allowing smaller packages), that the carrier can be designed with fewer layers, that more stringent design rules can be satisfied, and that the use of expensive manufacturing processes can be minimized.
SUMMARY OF THE INVENTION
The present invention comprises a pattern for an improved interface with routable coupling to substantially all of the signal lines on one “surface” of an IC device. A “surface” of the present invention is typically planar, and typically has a convex outer perimeter. It may also have a convex inner perimeter defining its center. “Substantially all” signals, terminals, or lines may exclude at most about 1-10% of the named set, such as anomalous groups of signal-carrying terminals near a corner or similar groupings. The inventive interface comprises a multiplicity of terminals each coupled to one of the IC device's signal lines.
Terminals are arranged into patterns, each pattern comprising substantially all terminals of a given “type” within the pattern's area—i.e., that are arranged for routing lines off of the plane in a first direction. A selected area of a horizontal PCB may, for example, have a pattern of bond pads arranged for routing lines upward intermingled with a pattern of vias for routing lines downward. An intermediate dielectric layer of a ceramic package has a pattern of vias for routing lines both upward and downward from some reference plane. Terminal patterns as described herein can be employed for patterning of vias, micro-vias, pins, bump pads, bond pads, ball pads and like connectors employed in IC chips, IC package layers and PCB layers.
The present invention partitions the terminals of a pattern into mutually exclusive groups distributed about the center of the pattern. In the common usage of carrier manufacturing (including, but not limited to, that of PCB's, sockets, multi-chip modules, or plastic IC packages), the “center” of a pattern may be either a region with few signal terminals or a center point. For typical designs, the center of the pattern is near the center axis of the device. For simplicity, it is preferable that a terminal group be “contiguous,” i.e. contained within a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Routable high-density interfaces for integrated circuit devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Routable high-density interfaces for integrated circuit devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Routable high-density interfaces for integrated circuit devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2558225

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.