Pixel structure having a bolometer with spaced apart...

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S238000

Reexamination Certificate

active

06307194

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to infrared detectors and associated fabrication methods and, more particularly, to the pixel structure of a bolometer-based focal plane array and associated fabrication methods.
BACKGROUND OF THE INVENTION
Infrared detectors are used in a variety of applications to provide an electrical output which is a useful measure of the incident infrared radiation. For example, quantum detectors are one type of infrared detector that are often used for night vision purposes in a variety of military, industrial and commercial applications. Quantum detectors generally operate at cryogenic temperatures and therefore require a cryogenic cooling apparatus. As a result, quantum detectors that operate at cryogenic temperatures can have a relatively complex design and generally consume significant amounts of energy.
Another type of infrared detector is a thermal detector. Thermal detectors are typically uncooled and therefore generally operate at room temperature. One type of thermal detector that has been developed and is becoming increasingly popular is a microbolometer-based, uncooled focal plane array. A focal plane array generally includes a plurality of pixel structures, each of which include a bolometer disposed upon a common substrate. Each bolometer includes a transducer element that has an electrical resistance that varies as a result of temperature changes produced by the incident infrared radiation. By detecting changes in the electrical resistance, a measure of the incident infrared radiation can be obtained. Since the design of a bolometer-based uncooled focal plane array is generally less complex than cryogenically cooled quantum detectors and since these uncooled focal plane arrays generally require significantly less energy than cryogenically cooled quantum detectors, bolometer-based uncooled focal plane arrays are being increasingly utilized.
Each pixel structure of a conventional uncooled focal plane array has a bolometer that includes an absorber element for absorbing infrared radiation and an associated transducer element having an electrical resistance that varies as its temperature correspondingly varies. Although the absorber and transducer elements can be separate layers of a multilayer structure, the absorber element and the transducer element may sometimes be the same physical element. In operation, infrared radiation incident upon the absorber element will heat the absorber element. Since the absorber element and the transducer element are in thermal contact, the heating of the absorber element will correspondingly heat the transducer element, thereby causing the electrical resistance of the transducer element to change in a predetermined manner. By measuring the change in electrical resistance of the transducer element, such as by passing a known current through the transducer element, a measure of the incident radiation can be obtained.
In order to permit the bolometer to be responsive to changes in the incident infrared radiation, the bolometer is generally designed to minimize thermal loss to the substrate. Thus, the bolometers of conventional focal plane arrays have separated the absorber and the transducer elements from the substrate so as to substantially thermally decouple the relatively massive substrate from the pixel. In this regard, each bolometer generally includes two or more legs that support the absorber and transducer elements above the substrate. The legs can extend between the absorber and transducer elements and the substrate, or the legs can connect the absorber and transducer elements to pillars or the like that support the absorber and transducer elements above the substrate.
In order to provide thermal contact between the absorber and the transducer elements while electrically insulating the transducer element from the absorber element, the bolometer also generally includes a thermally conductive, electrically insulating layer disposed between the absorber element and the transducer element. In addition, the bolometer typically includes another insulating layer disposed on the surface of the bolometer facing the substrate which serves to structurally support the other layers and to protect the other layers during the fabrication process. See, for example, U.S. Pat. Nos. 5,286,976; 5,288,649 and 5,367,167 which describe the pixel structures of conventional bolometer-based focal plane arrays, the contents of each of which are incorporated herein by reference.
In order to further improve the performance of conventional pixel structures, each bolometer can include a reflector disposed upon the surface of the substrate underlying the absorber and transducer elements. As such, infrared radiation that is incident upon the bolometer, but that passes through and is not absorbed by the absorber element, will be reflected by the reflector back towards the absorber element. At least a portion of the reflected radiation will therefore be absorbed by the absorber element during its second pass through the absorber element, thereby increasing the percentage of the incident radiation that is absorbed by the absorber element.
In operation, infrared radiation incident upon the pixel structure will be absorbed by the absorber element of the bolometer and the heat generated by the absorbed radiation will be transferred to the transducer element. As the transducer element heats in response to the absorbed radiation, the electrical resistance of the transducer element will change in a predetermined manner. In order to monitor the change in resistance of the transducer element and, therefore, to indirectly measure the infrared radiation incident upon the bolometer of the pixel structure, circuitry is generally formed upon the underlying substrate. The circuitry is generally electrically connected to the transducer element via a pair of conductive paths or traces defined by or upon the legs, pillars or the like that support the absorber and transducer elements above the surface of the substrate. By passing a known current through the transducer element, the change in electrical resistance of the transducer element can be measured and a corresponding measure of the incident infrared radiation can be determined.
While bolometer-based focal plane arrays having a plurality of pixel structures as described above are extremely useful, these conventional focal plane arrays have several disadvantages. Most notably, for the bolometer of each pixel structure, the characteristics of the absorber element and the transducer element cannot be separately optimized since the absorber and transducer elements are included within the same multilayer structure that is supported above the surface of the substrate. In this regard, in order to optimize the performance of the bolometer of a focal plane array, the absorption characteristics of the bolometer should be maximized while the thermal loss to the substrate should be minimized. In particular, the absorption characteristics are preferably maximized and the thermal loss to the substrate is preferably minimized in order to increase the sensitivity of the bolometer. As a secondary consideration, the thermal mass is also preferably reduced in order to decrease the time constant of the bolometer. Since both the absorber element and the transducer element are included within the same multilayer structure and, in some instances, are the same physical layer, design changes made to increase the absorption characteristics of the bolometer generally also disadvantageously increase the thermal mass of the bolometer, while design changes made to decrease the thermal mass of the bolometer generally disadvantageously reduce the absorption characteristics of the bolometer. For example, increases in the size of the absorber layer of the bolometer of a conventional pixel structure that are made to increase its absorption characteristics will also disadvantageously increase the thermal mass of the bolometer. Likewise, the reduction of the thermal mass of the bolometer of a conventional pix

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pixel structure having a bolometer with spaced apart... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pixel structure having a bolometer with spaced apart..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pixel structure having a bolometer with spaced apart... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554676

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.