Method for producing gradient tonal representation and a...

Incremental printing of symbolic information – Ink jet – Controller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C358S296000

Reexamination Certificate

active

06170930

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to printhead apparatus and, more particularly, to a method and apparatus for producing gradient tonal representations, for example, gray scale or other gradient single color representations, of images by combining continuous and halftone printing techniques.
2. Description of Related Art
Printers provide a means of outputting a permanent record in human readable form. Typically, a printing technique may be categorized as either impact printing or non-impact printing. In impact printing, an image is formed by striking an inked ribbon placed near the surface of the paper. Impact printing techniques may be further characterized as either formed-character printing or matrix printing. In formed-character printing, the element which strikes the ribbon to produce the image consists of a raised mirror image of the desired character. In matrix printing, the character is formed as a series of closely spaced dots which are produced by striking a provided wire or wires against the ribbon. Here, characters are formed as a series of closely spaced dots produced by striking the provided wire or wires against the ribbon. By selectively striking the provided wires, any character representable by a matrix of dots can be produced.
Non-impact printing techniques is often preferred over impact printing in view of its tendency to provide higher printing speeds as well as its better suitability for printing graphics and halftone images. Non-impact printing techniques include matrix, electrostatic and electrophotographic type printing techniques. In matrix type printing, wires are selectively heated by electrical pulses and the heat thereby generated causes a mark to appear on a sheet of paper, usually specially treated paper. In electrostatic type printing, an electric arc between the printing element and the conductive paper removes an opaque coating on the paper to expose a sublayer of a contrasting color. Finally, in electrophotographic printing, a photoconductive material is selectively charged utilizing a light source such as a laser. A powder toner is attracted to the charged regions and, when placed in contact with a sheet of paper, transfers to the paper's surface. The toner is then subjected to heat which fuses it to the paper.
Another form of non-impact printing is generally classified as ink jet printing. Ink jet printing devices use the ejection of tiny droplets of ink to produce an image. The devices produce highly reproducible and controllable droplets of ink, such that an ejected droplet may be precisely directed to a location specified by digitally stored image data for deposition thereat. Most ink jet printing devices commercially available may be generally classified as either a “continuous jet” type ink jet printing device where droplets are continuously ejected from the printhead and either directed to or away from a substrate, for example, a sheet of paper, depending on the desired image to be produced or as a “drop-on-demand” type ink jet printing device where droplets are ejected from the printhead in response to a specific command related to the image to be produced and all such ejected droplets are directed to the substrate for deposition.
Many drop-on-demand type ink jet printheads utilize electromechanically induced pressure waves to produce the desired droplets of ink. In one representative configuration thereof, a drop-on-demand type ink jet printhead has a horizontally spaced parallel array of internal ink-carrying channels. These internal channels are covered at their front ends by a plate member through which a spaced series of small ink discharge orifices are formed. Each channel opens outwardly through a different one of the spaced orifices. Within such a printhead, a volumetric change in fluid contained in the internal channels is induced by the application of a voltage pulse to a piezoelectric material which is directly or indirectly coupled to the fluid. This volumetric change causes pressure/velocity transients to occur in the fluid and these are directed so as to force a small, fixed quantity of ink, in droplet form, outwardly through the discharge orifice at a fixed velocity. The droplet strikes the paper at a specified location related to the image being produced and forms an ink “spot” having a diameter directly related to the volume of the ejected droplet.
Due to their ability to produce a spot at any location on a sheet of paper, ink jet and other non-impact printers have long been contemplated as being particularly well suited to the production of continuous and halftone images. However, the ability of ink jet printers to produce continuous and half tone images has been quite limited due to the fact that most ink jet printheads can only produce droplets having both a fixed volume and a fixed velocity. As a result, ink spots produced by such droplets striking a sheet of paper are of a fixed size, typically in the range of 120 &mgr;m to 150 &mgr;m, and the same intensity. Additionally, all ink jet printheads use a fixed resolution, typically 300-400 dpi (or “dots per inch”) or lower, to place droplets on a sheet of paper. In contrast, a typical high quality halftone image produced using offset printing techniques uses variable sized spots at resolutions of up to 240 dots per inch.
Due to the aforementioned limitations, ink jet printheads have heretofore utilized spot density, as opposed to spot size, when attempting to produce a gray scale image. To do so, the ink jet printhead creates various shades of gray by varying the density of the fixed size ink spots. Darker shades are created by increasing spot density and lighter shades are created by reducing spot density. Producing a gray scale image in this manner, however, reduces the spacial resolution of the printer, thereby limiting its ability to produce finely detailed images. Furthermore, the more levels added to the gray scale, the greater the resultant degradation of the printer's spacial resolution. A second proposed solution has been to direct multiple droplets at a single location on the sheet of paper to form variably sized spots. While such a method can produce the variably sized spots necessary to produce a gray scale image, such a technique tends to reduce the operating speed of the printer to an unacceptably low level. Furthermore, this technique may also produce elongated or elliptical dot patterns.
It can be readily seen from the foregoing that it would be desirable to provide a method and associated printing apparatus capable of producing a gray scale or other gradient tonal representation of an image. It is, therefore, an object of the present invention to provide such an improved drop-on-demand type ink jet printhead.
SUMMARY OF THE INVENTION
In one embodiment, the present invention is of a method of producing, on a physical medium, a gradient tonal representation of an image in which the image is divided into first and second regions. First, continuously variable intensity level and second, discretely variable intensity level portions of the representation which correspond to the first and second regions of the image are then printed. The steps of printing the first and second portions of said representation may further include the steps of printing continuous and halftone representations of the first and second regions of the image, respectively. The image is comprised of a plurality of pixels and, in one aspect thereof, the image may be divided into the first and second regions by determining an intensity level for each pixel of the image and assigning each of the pixels to either the first or second region based upon its intensity level. Each pixel may be assigned to the first region if its intensity level is within a range for which a continuously variable level representation may be printed and to the second level if its intensity level is within a range for which a discretely variable intensity level representation may be printed.
In further aspects thereof, the continuously vari

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing gradient tonal representation and a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing gradient tonal representation and a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing gradient tonal representation and a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.