System and method of recording and displaying in context of...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S372000, C600S410000, C600S411000, C600S415000, C600S417000, C600S425000, C600S427000, C600S429000, C600S431000, C600S437000, C600S440000, 36, C378S901000

Reexamination Certificate

active

06226543

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a system and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure, and, more particularly, to a system and method which enable to simultaneously obtain location data of the body, of a catheter inserted into the body and of an imaging instrument used to image the catheter and the body, to thereby record and display in context of the image the location of the at least one point-of-interest in a body even when the relative location between any of the above locatable items is changed.
In many cases patients undergo procedures in which a catheter is inserted into their body (e.g., into a body cavity, such as, but not limited to, heart, lung, kidney, bladder and brain cavities). It is in many cases desirable to follow the location of the catheter within the body. This is especially the case when the catheter is a probe designed to collected local information from within the body (e.g., record electrical activity) and/or to perform a local treatment within the body (e.g., ablation). In such cases, it is important to precisely locate the catheter within the body, such that the local information collected has value and/or the treatment is appropriately locally applied. To this end, methods have been developed in which an imaging apparatus is employed to provide an image of the body, whereas a locating implement combined with location implements (e.g., transmitters or receivers of electromagnetic or acoustic waves) to which the locating implement (receiver or transmitter, respectively) is compatible, and which are attached to the body of the patient and to the tip of the catheter, are employed to determine the location in space of the catheter and preferably also the body of the patient. However, the prior art fails to teach the co-establishment of the location of the imaging apparatus or the image coordinates, such that points-of-interest in the body are recordable, displayable and most importantly projectable onto an image of the body of the patient taken from another angle during the same procedure or during another, later procedure.
The following discussion of prior art, as well as most of the embodiments discussed hereinunder, focus on cardiac applications where the applicability of catheter probes in combination of imaging has found many uses.
About 150,000 patients in the U.S. and about a similar number of patients in other parts of the globe suffer from cardiac arrhythmia and are treated in an electro-physiology (EP) laboratory each year. Most of these patients undergo a procedure in which selected portions of their heart tissue are ablated.
Cardiac arrhythmia is the result of improper progression of electrical signals for contraction across the heart tissue. The common cases of cardiac arrhythmia are accessory pathways, ventricular tachycardia, supra ventricular tachycardia, AV node reentry and atrial tachycardia.
In addition, some atrial fibrillation symptoms, including typical anti clockwise and clockwise flutter, are also treated by ablation.
Until recently, fibrilation and non-typical flutter was treated by implantation of a defibrillator (AICD), however, recent studies show that maze procedure may also be effective.
A typical EP laboratory includes the following equipment: A steerable X-ray transillumination device, typically a C-mount transluminance fluoroscope; an electrocardiogram unit for recording electric signals obtained by ECG and by electrodes inserted into the heart via catheters to record inner heart electric signals; a radio-frequency unit to effect ablation via RF electrode also engaged with one of the catheters; a pacemaking unit, also operable via one of the catheter; and a computer and display unit for recording and presenting in real-time the electric signals derived from the heart of the patient.
Each procedure involves a staff including at least two physicians and a nurse. One of the physicians inserts, advances and steers the catheters within the body of the patient, while the other operates the computer and the other equipment. The tips of one or more (typically two) reference catheters are inserted into acceptable reference locations within the heart, typically the coronary sinus (CS) and/or to the right ventricular apical (RVA). The reference catheters include electrodes which measure reference electric signals from the inner surface of the heart tissue. The RVA catheter typically also serves to measure signals of the His boundle. A steerable mapping/ablation/pacemaking catheter in also inserted into the heart and serves to collect electric signals for mapping the electrical activity within the heart, for pacemaking and, in some cases, for ablation of selected locations in the heart. These data may be used as an electrophysiology real time imaging of the heart.
During the procedure, the heart region is transilluminated via the transillumination device and the catheters described are inserted into the heart from the inferior vena cava or the superior vena cava to the right atrium and, if so required, through the tricuspid valve to the right ventricular. Operation in the left portion of the heart is performed via Fossa ovalis to the left atrium and further through the Miteral valve to the left ventricle. In most cases the problem causing cardiac arrhythmia is known and the procedure is pre-planned. Accordingly, electric signals mapping of the region of interest is effected to locate the precise point to be ablated. Following ablation, the heart is triggered by the pacemaking unit to a series of contractions to see if the ablation solved the problem. In many cases the ablation procedure is repeated a number of times until a desired result is achieved.
According to the present methodology, knowing the three dimensional location of the steerable catheter tip within the heart cavity depends on a large number of data parameters and visual memorization and is therefore highly subjective. It is clear that movements of the catheter along the transillumination lines (Z axis) are at all not detectable since the image is two dimensional. In addition, the heart tissue itself is transparent to X-rays and it is therefore hardly or not imageable. The reference catheters serve an important function in this respect. While the position of the mapping/ablation/pacemaking catheter along the X and Y axes is provided by the transillumination image, the position of that catheter along the Z axis is evaluated by the steering physician according to the electrical signals recorded therefrom as compared to those signals recorded by the reference electrodes. Thus, the three dimensional location of the mapping/ablation/pacemaking catheter is subjectively established by experience, memorization and analysis of a large number of data parameters as opposed to objective criteria. These difficulties are more critical when it is required to return accurately to a location already mapped for further treatment. It is furthermore critical, when it is required to return to a location ablated before since while the catheter is in its ablation mode, its electric signals mapping function must be turned off. As a result, completely undetectable and undesirable location shifts, especially along the Z axis are sometimes experienced.
A catheter which can be located in a patient using an ultrasound transmitter allocated to the catheter is disclosed in U.S. Pat. No. 4,697,595 and in the technical note “Ultrasonically marked catheter, a method for positive echographic catheter position identification.” Breyer et al., Medical and Biological Engineering and Computing. May, 1985, pp. 268-271. Also, U.S. Pat. No. 5,042,486 discloses a catheter which can be located in a patient using non-ionizing fields and superimposing catheter location on a previously obtained radiological image of a blood vessel.
There is no discussion in either of these references as to the acquisition of a local information, particularly with electrical activation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method of recording and displaying in context of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method of recording and displaying in context of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method of recording and displaying in context of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.