Method of manufacturing ferrocenyl-1,3-butadiene

Organic compounds -- part of the class 532-570 series – Organic compounds – Heavy metal containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S224000, C149S019200

Reexamination Certificate

active

06211392

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to a method for manufacturing ferrocenyl-1,3-butadiene. More particularly, the present invention relates to a ferrocenyl-1,3-butadiene synthesis method with a relatively high yield and low pollution.
2. Description of Related Art
In U.S. Pat. Nos. 3,739,004 and 3,843,426, it has been found that ferrocenyl-1,3-butadiene is an important starting material for manufacturing copolymer and homopolymer and is employed in applications such as the coating material for aerospace transportation to enhance resistance to photo degradation, ultraviolet rays and gamma rays. Ferrocenyl-1,3-butadiene also can be employed as an enhancement fuel in solid propellant. The fuel of the solid propellant comprises aluminum powder and ammonium perchlorate. Additionally, ferrocenyl-1,3-butadiene not only can be an enhancement fuel in solid propellant but also can decrease binder use. Moreover, ferrocenyl alkenes can be employed in electronic materials.
Several processes to synthesize ferrocenyl-1,3-butadiene have already been proposed. However, the prior techniques possess several disadvantages that decrease the yield and the probability of increasing the throughput. The first method for synthesizing ferrocenyl-1,3-butadiene is the method utilizing Wittg reaction as shown in the following equation (I):
The disadvantage of the method described above is that the reactant, allyltriphenylphosphonium bromide, is ten times more expensive than allyl bromide and the throughput of the ferrocenyl-1,3-butadiene produced by this method is only 52%. Incidentally, the by-product, Ph
3
PO will not be easily removed and remains in the product.
The second method for synthesizing ferrocenyl-1,3-butadiene utilizes allyllithium as reagent and the equation of the method is indicated as equation (II) as shown below:
The method described above comprises two steps. First of all, allyllithium is synthesized by allyl bromide. Then, ferrocenyl-1,3-butadiene is formed in dehydration conditions of high temperature and low pressure. This is not a proper way to obtain a high throughput of ferrocenyl-1,3 -butadiene.
The third method for synthesizing ferrocenyl-1,3-butadiene utilizes allylmagnesium bromide as a synthesis reagent and the equation of the method is indicated as equation (III) as shown below:
The method described above also comprises two steps. In the dehydration reaction in the second step, if cupric sulfate is used as a dehydration reagent, the dehydrated water should be collected by the Dean-Stark distillatory. However, the throughput of ferrocenyl-1,3-butadiene in this method is just about 50-60% and cannot even be handled. If acidic aluminum oxide is used as a dehydration reagent, the use of aluminum oxide is ten times higher than that of the reagent. Hence, extending the throughput of ferrocenyl-1,3-butadiene by this method is improper.
The fourth method for synthesizing ferrocenyl-1,3-butadiene uses graphite-supported active zinc as a reagent and the equation of the method is indicated as equation (IV) as shown below:
The reagent is not a commercially available product. When preparing the reagent, potassium should be heated to a melting state, and then the melted potassium is powdered and mixed with graphite. After that, the mixture described above is used to reduce the anhydrous zinc chloride into ultra-fine active zinc powder. Usually, the throughput of ferrocenyl-1,3-butadiene reaches 85%. But if the active zinc powder is not fine enough, the yield is decreased. Therefore, it is hard to control the condition for synthesizing ferrocenyl-1,3-butadiene by using this method. Additionally, potassium is a highly active metal. If the operation is improperly or carelessly performed, an explosion is easily induced. Therefore, extending the throughput of ferrocenyl-1,3-butadiene by this method is improper.
SUMMARY OF THE INVENTION
The invention provides a method of manufacturing ferrocenyl-1,3-butadiene, comprising the steps of reacting a ferrocenecarbonyl with an allyl halide in a polar aprotic solvent lacking a carbonyl group and containing a samarium diiodide in a temperature range.
The invention offers a method for manufacturing ferrocenyl-1,3-butadiene with a structure VII (shown below) that uses the reaction of ferrocenecarbonyl with a structure V (shown below) and allyl halides with a structure VI (shown below) with samarium diiodide at 0° C. to room temperature. The reaction is clean, and the product is easily separated from the reaction mixture in very high yields (93-99%). Moreover, the catalytic amounts of samarium diiodide are used for the synthesis of ferrocenyl-1,3-butadienes. Magnesium is used to promote the recycle of samarium diiodide in the reactions.
Because of the high reduction ability of samarium diiodide, allyl halides are converted into allylsamarium. Moreover, samarium diiodide can be reacted with ferrocenecarbonyl to reach the addition reaction and the samarium trivalent cation can promote the dehydration of the alcohol intermediate.
Additionally, the synthesis method provided by the invention is a one-pot reaction. Incidentally, the reaction is mild, danger is low, less pollution is produced and the condition of the reaction is easily controlled. Furthermore, the product of the reaction is easily separated and the yield of the reaction is high.
In the invention, the catalytic amounts of samarium diiodide are coordinated with cheap magnesium to produce ferrocenyl-1,3-butadiene. Therefore, the cost of manufacturing ferrocenyl-1,3-butadiene can be decreased.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.


REFERENCES:
patent: 3739004 (1973-06-01), Ponder et al.
patent: 3843426 (1974-10-01), Huskins et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing ferrocenyl-1,3-butadiene does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing ferrocenyl-1,3-butadiene, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing ferrocenyl-1,3-butadiene will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.