Full drain and vent adapter for pressure sensing transmitter

Measuring and testing – Fluid pressure gauge – Mounting and connection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06272931

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates generally to an adapter for mounting a pressure-sensing transmitter in a vertical orientation, and more particularly to such an adapter that is suitable for use in either gas or liquid pressure sensing applications.
2. Background Art
Multi-valve manifolds have been used to mount pressure sensing transmitters such as Rosemount® Coplanar™ style pressure transmitters. Such multi-valve manifolds are adapted for specific use in either a gas or in a liquid process application. Threaded plugs are typically installed in test ports on the top of the valve, and the valve is constructed in such a manner that prevents it from being reversed end for end, thus requiring separate configurations for liquid service and gas service applications. Additionally, it is difficult to drain condensate from the pressure cavities of the manifold and transmitter in order to avoid calibration errors. Also, since pressure sensing transmitters are now generally mounted directly to a multi-valve manifold in a field environment, it is difficult to accurately tighten the mounting bolts to assure that the high torque requirements specified by the transmitter manufacturer are met.
The present invention is directed to overcoming the problems set forth above. It is desirable to have a simple adapter that can be directly mounted to a standard horizontal mount blocking manifold, which thereby places the transmitter sensing foils in a vertical plane. As the result of the transmitter sensing foils being disposed in a vertical plane, condensate or deposits on the foils will not affect measurement accuracy, and the foil face can be either fully vented or fully immersed in the pressure media. This is impossible with horizontally positioned foils. It is also desirable to have an adapter that is reversible end for end (top for bottom) so that the pressure transmitter can be used in either liquid or gas service applications. It is also desirable to have a full drain and vent adapter for pressure sensing transmitters that has a foil cavity design in the adapter that allows full drain or vent even if the adapter is misaligned vertically by up to 15%. Furthermore, it is desirable to have such a full drain and vent adapter for mounting pressure-sensing transmitters that allows factory or shop torquing of the transmitter head to the manufacturer's specified high torque values, and additionally protects the sensing foils during shipping, handling, and installation of the pre-assembled unit at a field site.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a reversible adapter for selectively mounting a pressure-sensing transmitter to a manifold in either a liquid or a gas system has a first end surface in which a pair of vent ports are disposed, a second end surface that also has a pair of end ports disposed therein, first and second planar surfaces extending between the first and second end surfaces, and a pair of spaced-apart internal passageways. The first planar surface is adapted for mounting the adapter to a predefined manifold, and the second planar surface is adapted for mounting a pressure-sensing transmitter or test instrument thereon. The adapter also has a first set of apertures that extend through the adapter from the second planar surface to the first planar surface at a position approximate the first end surface, and a second set of apertures extending through the adapter from the second planar surface to the first planar surface at a position proximate the second end surface. The reversible adapter further includes a pair of spaced-apart internal passageways disposed in mutually parallel relationship. Each of the passageways respectively extend between a separate one of the pair of vent ports disposed in the first end surface and a corresponding separate one of the vent ports disposed in the second end surface.
Other features of the reversible adapter embodying the present invention include the first planar surface having a pair of ports defined therein that are arranged to mate with a corresponding pair of ports on the predefined manifold, each port of the pair of ports being in respective communication with a separate one of the internal passageways in the body of the adapter. Other features include each member of the pair of ports on the first planar surface having a groove formed in the first planar surface that is disposed in spaced circumscribing relationship about the respective port. Still other features include the reversible adapter having a pair of ports defined on the second planar surface that are arranged to mate with a corresponding pair of ports on the pressure sensing transmitter, with each port of the pair of ports on the second planar surface being in respective communication with a separate one of the internal passageways in the body of the adapter.
Yet additional features of the reversible adapter embodying the present invention include each aperture of the first set of apertures extending from the second planar surface to the first planar surface at a position proximate the first end surface has a smooth bore adapted to receive a fastening member therethrough for engagement with the base of the pressure sensing transmitter. Another feature includes each aperture of the second set of apertures extending from the second planar surface to the first planar surface at a position proximate the second end surface of the adapter has a threaded bore adapted to receive a fastening member extended through a portion of the predefined manifold.
Yet another feature of the reversible adapter embodying the present invention includes the adapter body being reversibly mountable in a substantially vertical plane wherein the first end surface is positionable elevationally above the second end surface and the vent ports of the second end surface provide drain ports for the internal passageways of the body, and the second end surface is positionable elevationally above the first end surface and the vent ports of the first end surface provide drain ports for the internal passageways of the body when the adapter is mounted on the manifold of a gas processing system.


REFERENCES:
patent: 5823228 (1998-10-01), Chou
IntelliMountTMSystem, “a new generation of instrument manifold systems”, Anderson Greenwood tyco flow contgrol. (No Date).
Model 305 and 306 Manifold Solutions, RosemountR, Fisher-RosemountTMManaging The Process BetterTM(No Date).
Model 305 Integral Manifolds, RosemountRMeasurement, Fisher-RosemountTMManaging The Process BetterTM(No Date).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Full drain and vent adapter for pressure sensing transmitter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Full drain and vent adapter for pressure sensing transmitter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Full drain and vent adapter for pressure sensing transmitter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.