Electrode catheter system for tissue ablation

Surgery – Instruments – Electrical application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S050000, C607S122000

Reexamination Certificate

active

06231570

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to improved constructions for a cardiovascular catheter. More particularly, this invention relates to a delivery catheter containing multiple retractable micro-catheters and methods for ablating tissues via the micro-catheters, wherein each micro-catheter has one cooled multiple-needle electrode and has irrigation capabilities for ablating tissues resulting in a plurality of deeper and linear lesions.
BACKGROUND OF THE INVENTION
Symptoms of abnormal heart rhythms are generally referred to as cardiac arrhythmias, with an abnormally rapid rhythm being referred to as a tachycardia The present invention is concerned with the treatment of tachycardias which are frequently caused by the presence of an “arrhythmogenic site” or “accessory atrioventricular pathway” close to the inner surface of the chambers of a heart. The heart includes a number of normal pathways which are responsible for the propagation of electrical signals from the upper to lower chambers necessary for performing normal systole and diastole function. The presence of arrhythmogenic site or accessory pathway can bypass or short circuit the normal pathways, potentially resulting in very rapid heart contractions, referred to here as tachycardias.
Treatment of tachycardias may be accomplished by a variety of approaches, including drugs, surgery, implantable pacemakers/defibrillators, and catheter ablation. While drugs may be the treatment of choice for many patients, they only mask the symptoms and do not cure the underlying causes. Implantable devices only correct the arrhythmia after it occurs. Surgical and catheter-based treatments, in contrast, will actually cure the problem, usually by ablating the abnormal arrhythmogenic tissue or accessory pathway responsible for the tachycardia It is important for a physician to accurately steer the catheter to the exact site for ablation. Once at the site, it is important for a physician to control the emission of energy to ablate the tissue within the heart
Of particular interest to the present invention are radiofrequency (RF) ablation protocols which have been proven to be highly effective in tachycardia treatment while exposing a patient to minimal side effects and risks. Radiofrequency catheter ablation is generally performed after conducting an initial mapping study where the locations of the arrhythmogenic site and/or accessory pathway are determined. After a mapping study, an ablation catheter is usually introduced to the target heart chamber and is manipulated so that the ablation tip electrode lies exactly at the target tissue site. Radiofrequency energy or other suitable energy is then applied through the tip electrode to the cardiac tissues in order to ablate the tissue of arrhythmogenic site or the accessory pathway. By successfully destroying that tissue, the abnormal signal patterns responsible for the tachycardia may be eliminated. However, in the case of atrial fibrillation (AFib), multiple arrhythmogenic sites and/or multiple accessory pathways exist. The conventional catheter with a single ablation tip electrode can not effectively cure the symptoms.
Atrial fibrillation is believed to be the result of the simultaneous occurrence of multiple wavelets of functional re-entry of electrical impulses within the atria, resulting in a condition in which the transmission of electrical activity becomes so disorganized that the atria contracts irregularly. Once considered a benign disorder, AFib now is widely recognized as the cause of significant morbidity and mortality. The most dangerous outcome from AFib is thromboembolism and stroke risk, the latter due to the chaotic contractions of the atria causing blood to pool. This in turn can lead to clot formation and the potential for an embolic stroke. According to data from the American Heart Association, about 75,000 strokes per year are AFib-related.
A catheter utilized in the endocardial RF ablation is inserted into a major vein or artery, usually in the neck or groin area For epicardial ablation, a catheter is percutaneously introduced into the chest cavity through a small surgery hole, followed by penetrating through a punctured hole through the pericardium into the epicardial cavity.
The tip section of a catheter is referred to here as the portion of that catheter shaft containing the electrode or electrodes which may be deflectable. In one embodiment, the catheter is then guided into the appropriate chamber of the heart by appropriate manipulation through the vein or artery. The tip section of a conventional electrophysiology catheter that is deflectable usually contains one large electrode about 4 mm in length for ablation purpose. The lesion is generally not deep because of short energy delivery period due to potential impedance increase at the ablation site. And the lesion is not long to form a linear lesion.
Imran in U.S. Pat. No. 5,281,218 teaches a needle electrode attached on a catheter for radiofrequency ablation. In a co-pending application U.S. Ser. No. 08/856,726, filed May 15, 1997, Tu et al. describes a catheter having at least one multiple-needle electrode to enhance the RF energy delivery to make a deeper and larger lesion. However in the case of atrial fibrillation, it is frequently necessary to create several linear lesions. Therefore there is a need for a new and improved catheter system having a plurality of retractable micro-catheters, with each one having cooled multiple-needle electrodes for making deep and large multiple lesions in the myocardium or epicardium of the heart
SUMMARY OF THE INVENTION
In general, it is an object of the present invention to provide a delivery catheter containing multiple retractable ablation micro-catheters. It is another object of the present invention to provide an ablation catheter system having a delivery catheter comprising a plurality of retractable micro-catheters, each with at least one cooled multiple-needle electrode which can be used in ablating the arrhythmogenic region instead of an arrhythmogenic point of a patient. This catheter is particularly useful for treating a patient with atrial fibrillation (AFib) indications.
In one embodiment, an ablation catheter system comprises a delivery catheter having a distal section, a distal end, a proximal end, and at least one lumen extending therebetween. A handle is attached to the proximal end of the delivery catheter. A plurality of retractable inner micro-catheters is located within the lumen of the delivery catheter, each micro-catheter having a distal tip section, a distal end, a proximal end, and a central lumen extending therebetween, wherein the distal tip section has at least one pre-shaped L-shape electrode. A deployment means for deploying the plurality of the retractable inner micro-catheters out of the delivery catheter is located at the handle and is connected to each of the retractable inner micro-catheters.
In another embodiment, the multiple-needle electrode is the tip electrode. In an alternate embodiment, the multiple-needle electrode contains a plurality of needles on said electrode. In a further embodiment, at least one needle on the at least one electrode of each inner-catheters faces outwardly toward the tissue surface to be ablated in endocardial ablation procedures or faces inward toward the epicardial tissue surface in epicardial ablation procedures. Therefore, at ablation time, the needles are positioned essentially perpendicular to the tissues to be ablated. In still another embodiment, the needles face at different directions so as to contact the endocardial tissue when a bi-directional deflectable catheter is used in the ablation procedures. The retractable inner micro-catheters are at a non-deployed state when it is positioned inside the delivery catheter. This non-deployed state is maintained during the catheter insertion operation into a patient and during withdrawal of the catheter from a patient.
The retractable inner micro-catheters are at a deployed state when they are advanced out of the distal end of said d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrode catheter system for tissue ablation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrode catheter system for tissue ablation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode catheter system for tissue ablation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.