Non-contacting communication and power interface between a...

Facsimile and static presentation processing – Static presentation processing – Communication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C358S001100, C347S214000, C347S216000, C399S089000, C399S090000

Reexamination Certificate

active

06239879

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to electronic printers and, more particularly, to printers having attached accessory units which require power and communications connections between the printer and accessory unit.
BACKGROUND OF THE INVENTION
The past twenty years have witnessed an incredible variety of printers designed for digital computers. For years, the line printer was the mainstay of the computer industry. Then, in the mid-1970's, the personal computer revolution began with the appearance of primitive computers based on the S-
100
bus. With the appearance of more user-friendly computers from Apple Computer and, later, from IBM Corporation, the demand for personal computers soared. The public's almost insatiable appetite for personal computers has spawned a virtual explosion of technology. Printer technology has been one of the principal beneficiaries of that technology explosion. Early on, dot-matrix printers grabbed the lion's share of the market. For less than a decade, daisywheel printers shared the limelight for letter-quality printing tasks. Thermal printers were briefly used for portable applications. High-resolution dot-matrix printers and ink-jet printers sounded the death knell for daisywheel printers. Though greatly reduced in number, dot matrix printers seem to have found a niche for multiple form printing applications.
Laser computer printers have been around almost since the beginning of the personal computer revolution. In late 1980, Xerox Corporation introduced a laser printer for mainframe computers. Retail priced at a lofty $298,000, it could print more than 30 pages a minute. However, it was not until the Hewlett Packard Company began marketing the LaserJet series of laser printers that laser printers for personal computers became commonplace. Color laser printers, which are now becoming more affordable, may eventually become as ubiquitous as the black-and-white laser printers.
Modern electronic printers (especially those employing laser copying technology) are generally equipped with at least one replaceable component, such as a toner cartridge. Frequently, there is a need to install a peripheral device on the replaceable component. Such peripheral device may include, without limitation, a microprocessor, a non-volatile memory, a toner quantity sensor, an environmental condition sensor, a photoconductor condition sensor, or a print quality sensor. Each such device would generally require some sort of power source and would need to communicate with the printer engine. Current approaches to providing connectivity between a host printer engine and a peripheral device on the replaceable component involve making direct electrical contact between the printer engine and the peripheral. In order to handle both communications and power transfer, at least four electrical contacts may be required. Typically, such contacts are rather delicate, as they must be manufactured with a high degree of mechanical precision in order to maintain a required level of compactness. Such contacts typically involve a sliding action during the connection and disconnection process. Although the sliding action tends to wipe away dirt and other contaminants at the contact site, thus improving the electrical connection, it also creates wear on plated materials. As the plating is worn away, exposing a base metal more prone to corrosion, contact reliability will degrade. Corrosion-related contact degradation may be exacerbated by the presence of ozone within the printer body. Ozone, a strong oxidizing compound, is generated during certain electrophotographic processes. If spring-type electrical contacts are employed to make the required connections, they may be subject to bending or other damage which would impair the reliability of the connection.
Consequences related to the foregoing problems can be anything from merely an annoyance to printer inoperability.
What is needed is a contactless connection system for providing power and communications coupling to a peripheral device on a replaceable printer component.
SUMMARY OF THE INVENTION
Replaceable printer components, such as toner cartridges, are generally located within and in contact with the printer engine. Contactless power and communications links are established between the replaceable component and the printer engine for peripheral devices installed on or within the replaceable component. Such peripheral devices may include, without limitation a microprocessor, a non-volatile memory, a toner quantity sensor, an environmental condition sensor, a photoconductor condition sensor, or a print quality sensor. For peripheral devices incorporated within or on the replaceable component, power is inductively transferred from a primary winding on the printer engine to an adjacent secondary winding on the replaceable component without the use of direct physical contact between electrical conductors. In addition, communications between the printer engine and at least one peripheral device on board the replaceable component are provided without making direct physical contact between electrical conductors. The communication task is accomplished in one of several ways. For a first embodiment of the invention, control signals are sent from the printer engine to the replaceable component over the inductive power coupling circuit by switching between two frequencies of alternating current applied to the primary winding on the printing engine. The frequency switching is decoded on board the replaceable component to provide control signals for the peripheral device. For example, the higher frequency alternating current may represent the sending of a “1”, while the lower frequency alternating current may represent the sending of a “0”. For communications in the opposite direction, the peripheral device may send information to the printer engine by modulating a resistive load coupled to the secondary winding. Current flow through the primary winding will vary in response to the load on the secondary winding. The variations in current flow on the printer engine side are decoded to signals which the printer engine comprehends. For a second embodiment of the invention, communications between the printer engine and one or more peripheral devices are independent of the inductive power coupling circuit. Individual signal lines are inductively coupled across a narrow gap. For a third embodiment of the invention, unidirectional communications are handled by a diode pair, one diode being a transmitter diode, the other being a receiver diode. For bidirectional communications, two diode pairs are utilized. For a preferred implementation of this latter arrangement, the diode transmitters and receivers operate in the infrared range of the electromagnetic spectrum, although other frequencies are also contemplated. Operating commands from the printer engine to the peripheral and information from the peripheral to the printer engine may be communicated over these communication links.
Because plain-paper copiers, facsimile machines and printers share many components in common, there has recently been a blurring of the distinction between those three types of machines. Combination units are produced by various manufacturers. Some types utilize laser or LED-based photocopy engines, while others rely on ink-jet technology. Because of this blurring that has occurred, the invention disclosed herein, though directed primarily to printer applications, is equally applicable to plain-paper copiers and facsimile machines which have replaceable printing components with on-board peripheral devices.


REFERENCES:
patent: 4781716 (1988-11-01), Richelsoph
patent: 5184181 (1993-02-01), Kurando et al.
patent: 5276398 (1994-01-01), Withers et al.
patent: 5589859 (1996-12-01), Schantz
patent: 5682575 (1997-10-01), Komori
Pending U.S. Patent application Ser. No.: 08/995664; filed Dec. 19, 1997; Title: Electronic Printer Having Wireless Power and Communications Connections to Acccessory Units.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-contacting communication and power interface between a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-contacting communication and power interface between a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-contacting communication and power interface between a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.