Compositions and methods of treatment using peat derivatives

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Conjugate or complex

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S155000, C423S158000, C423S166000, C423S179000, C423S184000, C423S193000, C514S686000, C514S825000, C514S858000, C514S861000, C514S863000, C514S886000

Reexamination Certificate

active

06267962

ABSTRACT:

TECHNICAL FIELD
This invention relates to novel compositions, methods of isolation and synthesis, and pharmaceutical uses of materials derived from peat. These compositions may be used for the treatment of wounds and for diseases and disorders such as pruritis, psoriasis, allergic and other dermatitis, eczema, and actinic keratosis. The compositions may be suitable for accelerating wound healing; relieving pain, itch or inflammation; reducing abnormal proliferative cell growth, particularly keratinocytes, of the skin and for hyperplastic and neoplastic conditions of other epithelial systems in the human body; and providing antifungal, antiviral, or antibacterial activity. In addition, the composition can be used as a diuretic, antiarrhythmic, and cardiac-stimulating agent. It may also be used as a therapeutic agent in the treatment of multiple drug resistance, malignancies, asthma, rheumatoid arthritis, fungal infections, and inflammatory disorders.
BACKGROUND OF THE INVENTION
Normal skin epidermis is a complex epithelial tissue containing keratinocytes that are proliferating, differentiating, and desquamating. Many common diseases of the skin epidermis, such as psoriasis, squamous cell carcinoma, keratoacanthoma, actinic keratosis, and warts, are characterized by localized abnormal proliferation and growth that is localized. For example, in psoriasis, which is characterized by scaly, red, elevated plaques on the skin, the keratinocytes are known to proliferate much more rapidly than normal. Eczema is a superficial inflammatory process involving primarily the epidermis, marked early by redness, itching, minute papules and vesicles, weeping, oozing, and crusting, and later by scaling, lichenification, and often pigmentation.
Clinical use of available treatments for diseases involving epidermal conditions is often limited by toxicity, either systemic or local. For example, methotrexate, although generally effective for treating epidermal conditions when administered orally, is rarely administered orally for fear of hepatic or bone marrow toxicity. Topical application of methotrexate has minimal or no therapeutic effect. Similarly, although topical application of 5-fluorouracil may be an effective treatment for psoriasis, it is generally considered to be unacceptably irritating. Steroid therapy, though effective, is associated with adverse side effects that are potentially so numerous or serious that prolonged use is discouraged. Photochemotherapy with psoralens and ultraviolet light, or PUVA (psoralens and UV treatment), is generally effective for treatment of epidermal conditions, but it is inconvenient to administer and causes side effects and may even cause photomutagenic and photocarcinogenic reactions.
Many of the existing treatments for wound healing and the relief of pain, itch, and inflammatory conditions, at best, are only moderately or minimally effective. Moreover, their clinical use is often limited by toxicity or undesirable side effects. Considerable research effort has been devoted to ameliorating procedures and compositions for such conditions, but few satisfactory treatments have been developed. Likewise, most therapies available for treating neoplasms and abnormal proliferative cell growth produce undesirable side effects. The compositions of the present invention are therefore directed to pharmaceutical preparations and methods for treating a variety of disorders.
In the past several years, the events that trigger the symptoms associated with hyperproliferative as well as other diseases of the skin are becoming better understood at a cellular level. By understanding the basic processes causing the symptoms of these disorders, treatments can be developed that utilize substances capable of modulating, at a cellular level, the chemical signals that lead to inflammation and cell proliferation.
One important class of chemical signals are the protein kinases, including the enzyme, protein kinase C (“PKC”). PKC is a phospholipid-dependent serine/threonine protein kinase that has a major function in cellular growth control. Protein kinases have been implicated in diseases such as psoriasis, rheumatoid arthritis, cystic fibrosis, asthma, and cancer.
PKC plays a role in the control or modulation of many metabolic and other processes. PKC is a calcium-activated phospholipid-dependent protein kinase that phosphorylates a number of intracellular protein substrates. It relays information in the form of extracellular signals across the membrane to regulate many calcium ion dependent processes.
PKC stimulates the release of phospholipase A2, which causes formation of inflammatory prostaglandins via the arachidonic acid cascade. It has been implicated as a possible intracellular “switch” (signal transducer) involved in inflammation and cell proliferation. For this reason, PKC, as well as other modulators and components of the arachidonic acid cascade, have become targets for therapeutic intervention or modulation in diseases such as psoriasis, rheumatoid arthritis, cystic fibrosis, asthma, cancer, and other inflammatory disorders.
It has been shown that psoriatic plaques have higher concentrations of PKC than normal skin. Thus, excessive PKC activity may be a causative agent of the symptoms of psoriasis.
In addition to being implicated in dermatological diseases, PKC may be involved in other disorders that are effected or regulated in some way by these enzymes. For example, the cardiac regulatory protein troponin is phosphorylated by a calcium-dependent protein kinase. Therefore, PKC modulators may have cardioregulatory activity.
PKC may further be a receptor of tumor promoters and is believed to play a critical role in the carcinogenic process. Phorbol esters and other agents promoting carcinogenesis are believed to exert their carcinogenic effects by activation of PKC, which then activates messenger-independent protein kinases such as MBP (myelin basic protein kinase) and S6P (Kemptide kinase). MBP and S6P are released from phorbol ester-stimulated cells and are believed to be activated by PKC and to be involved in carcinogenesis. They are greatly increased in phorbol ester-stimulated cells. MBP kinase is thought to serve as a central link in cellular signaling pathways in that it is activated by a variety of stimuli, e.g., growth factors, hormones and tumor promoters.
Some investigators believe that the myriad of anticarcinogenic retinoid actions can be explained by their effects as inhibitors of PKC.
There are only a few compounds with potent activity as PKC inhibitors; these include sphingosine, cyclosporine, and certain isoquinoline sulfonamides. Unfortunately, these compounds have toxic or nonspecific side effects prohibiting or limiting their use, or they are not active in vivo. Accordingly, aggressive searches continue for selective PKC modulators for use in the treatment of cancers and other inflammatory diseases, as well as other disorders that are effected by PKC activity.
Other groups of enzymes that appear to exhibit various biochemical activities are the calcium-dependent ATP'ases (“Ca-ATP'ases”) and calmodulin-stimulated calcium pump ATP'ases (“calmodulin ATP'ases”). These regulators control the level of calcium ions in cells. Calcium ion concentrations are known to play an important role in both plant and animal cell regulation. Calcium is especially important in controlling constriction of muscle cells and cellular proliferation. It also plays an important role in bone metabolism and motility of spermatozoa.
Inhibitors or modulators of Ca-ATP'ases or calmodulin ATP'ases could provide important therapies for the treatment of biochemical disorders in which they play a role. There are very few known specific inhibitors of Ca-ATP'ases.
There have been claims of medicinal activities of various extracts, particularly peat wax derivatives of peat. However, none of these claims have been substantiated.
Peat is generated by the decomposition of vegetation. Peat is mainly composed of water, and the solid mass usually is only about 10

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods of treatment using peat derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods of treatment using peat derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods of treatment using peat derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543271

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.