Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
1998-10-15
2001-05-29
Pascal, Leslie (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S199200, C359S199200, C359S199200, C359S199200, C359S199200
Reexamination Certificate
active
06239890
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of repairing an undersea optical fiber transmission system using soliton signals with wavelength division multiplexing, and in which the various wavelengths of the multiplex are selected so as to ensure that over a given interval the relative slip between the various channels is substantially equal to a multiple of the bit time.
The invention also relates to apparatus for repairing such a transmission system.
BACKGROUND OF THE INVENTION
The transmission of soliton pulses or “solitons” in the portion of an optical fiber that has abnormal dispersion is a known phenomenon. Solitons are pulse signals having a sech
2
waveform. With pulses of this form, the non-linearity in the corresponding portion of the fiber compensates dispersion of the optical signal. Soliton transmission is modelled in known manner by the non-linear Schordinger equation.
Various effects limit the transmission of such pulses, such as the jitter induced by the solitons interacting with the noise present in the transmission system, as described for example in the article by J. P. Gordon and H. A. Haus published in Optical Letters, Vol. 11, No. 10, pp. 665-667. This effect which is known as the “Gordon-Haus effect” or as “Gordon-Haus jitter” puts a theoretical limit on the quality or the bit rate of transmission by means of solitons.
To be able to overcome that limit, it is possible to use synchronous modulation of soliton signals with the help of semiconductor modulators. That technique intrinsically limits the bit rate of the soliton link because of the upper limit on the passband of a semiconductor modulator. Proposals have also been made for systems using sliding guiding filters that make it possible to control the jitter of transmitted solitons, see for example EP-A-0 576 208. Proposals have also been made, for the purpose of regenerating the line signal, to use the Kerr effect in synchronous amplitude or phase modulators. Finally, proposals have been made to regenerate soliton signals by using saturable absorbers.
Another proposal for increasing the bit rate of optical fiber transmission systems using soliton signals is to use wavelength division multiplexing (WDM). Under such circumstances, it is considered advantageous to use sliding guiding filters of the Fabry-Perot type, which filters are entirely compatible with wavelength division multiplexed signals. In contrast, the use of synchronous modulators or saturable absorbers for regenerating wavelength division multiplexed soliton signals is problematic because of the difference in group speeds between the signals in the various channels.
An article by E. Desurvire, O. Leclerc, and O. Audouin, published in Optics Letters, Vol. 21, No. 14, pp. 1026-1028, describes a wavelength allocation scheme which is compatible with the use of synchronous modulators. That article proposes allocating wavelengths to the various channels of the multiplex in such a manner that, for given intervals Z
R
between the repeaters, the signals on the various channels, or more exactly the bit times of the various channels in the multiplex, are substantially synchronized on arriving at the repeaters. This makes in-line synchronous modulation of all of the channels possible at given intervals with the help of discrete synchronous modulators. That technique of allocating multiplexed wavelengths is also described in French patent application 96/00732 file on Jan. 23, 1996 in the name of Alcatel Submarine Networks.
Another article by O. Leclerc, E. Desurvire, and O. Audouin, published in Optical Fiber Technology, 3, pp. 97-116 (1997) specifies that in such a wavelength allocation scheme, the bit times of subsets of the channels in the multiplex are synchronous at intervals that are submultiples of Z
R
. That article consequently proposes regenerating subsets of the channels in the multiplex at shorter intervals. Those solutions make it possible to transmit solitons over long distances, e.g. over transoceanic distances.
Soliton signal transmission systems are particularly adapted to high data rate transmission over long distances; one of the applications of such transmission systems is thus transoceanic transmission where typical lengths are a few thousands of kilometers.
One of the problems of a transoceanic transmission system is physical breakage of the transmission system or damage in the transmission system that cannot be repaired remotely. In conventional manner, under such circumstances, the undersea cable is raised and the damaged section is replaced. That solution is common practice and it is shown by way of example in
FIGS. 1 and 2
. As shown in
FIG. 1
, the cable
1
lies on the ocean bottom and has a damaged section
2
. This section can be damaged in any way that is unsuitable for being repaired remotely. Under such circumstances, as shown in
FIG. 2
, the cable is raised and the damaged section is replaced by means of a length L of replacement cable
3
.
OBJECT AND SUMMARY OF THE INVENTION
The object of the invention is to provide a solution to the problem posed by that repair technique when applied to optical fiber transmission systems using soliton signals with wavelength division multiplexing in which the various wavelengths of the multiplex are selected so as to ensure that the relative slip between the various channels over a given interval is substantially equal to a multiple of the bit time. The conventional repair technique implies using a length of optical fiber that is longer than the damaged section of the transmission system. This can be seen clearly in
FIG. 2
where an additional length of cable L needs to be installed because of the depth d of the ocean, given that the repair is carried out on the surface. Such an additional length of cable is of no consequence in a conventional transmission system and has not previously been seen as a possible source of difficultly. The extra length L is about 1.6 times the depth d, and the effects of such an additional length, which is of the order of a few kilometers, are well below the constraints put on conventional transmission systems. Nevertheless, for an optical fiber transmission system using soliton signals with wavelength division multiplexing, and in which the various wavelengths of the multiplex are selected to ensure that, over a given interval, the relative slip between the various channels is substantially equal to a multiple of the bit time, such an additional length of optical fiber can give rise to relative slip between the various channels such that the bit times are no longer exactly synchronous on arriving at a repeater. E. Desurvire et al. in Transoceanic regenerated soliton systems: Design for over 100 Gbit/s capacities, Suboptic '97, pp. 438-447 describes on page 442 the effect of a length of repair cable on the Q factors of the various channels of a soliton transmission system with wavelength division multiplexing. That article concludes that the effects of such an additional length of cable are absorbed after about 2 Mm of propagation. Those results cannot be transposed to breaks in the vicinity of the ends of the link, in particular because propagation over 2 Mm is required in order to achieve those results; the article therefore does not propose a solution which is applicable to breaks in the vicinity of the ends of a link. Furthermore, it is not necessarily always acceptable to have a penalty on the quality of the link at a given location, even if the penalty is local only.
The present invention proposes a solution to this problem which is original and simple. It makes it possible to avoid offsetting the channels and to maintain channel synchronism at the repeaters. It ensures that the quality of the link remains good over the entire length of the line. It applies to breaks at any point in the link.
The invention also provides a solution to the problem of losses in such an additional length of fiber. In the past, such losses were not perceived as being troublesome. Nevertheless, they can give difficulty in a soliton signal
Alcatel
Pascal Leslie
Phan Hanh
Sughrue Mion Zinn Macpeak & Seas, PLLC
LandOfFree
Repairing undersea optical fiber transmission systems using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Repairing undersea optical fiber transmission systems using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Repairing undersea optical fiber transmission systems using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2541155