Stretchable anti-buckling coiled-sheet stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent in combination with graft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001150

Reexamination Certificate

active

06290720

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to prostheses for implantation with body lumens, and more particularly to a stent-graft having a flexible exo-skeleton attached to a tubular graft.
BACKGROUND
Graft prostheses are often implanted within blood vessels, particularly the aorta or other arteries, which may be subject to aneurysm formation and/or severe atherosclerotic disease which may involve multiple stenoses. For example, an aortic aneurysm may develop in a patient, for example, within the abdominal aorta at the aorto-iliac bifurcation, requiring treatment before the vessel wall ruptures. To repair a blood vessel damaged by such an affliction, a procedure involving use of a graft prosthesis is generally performed.
A number of graft prostheses have been suggested that include a tubular graft attached to a stent. The tubular graft may be a biocompatible porous or nonporous tubular structure to which a stent structure, such as a wire mesh, may be attached. The stent structure may be biased to assume an enlarged configuration corresponding to a target treatment site, but may be constrained in a contracted condition to facilitate introduction into a patient's vasculature. The graft prosthesis may be percutaneously introduced in the contracted condition, advanced to a treatment site within a blood vessel, and released to assume the enlarged condition and repair and/or bypass the treatment site.
One problem often associated with such prostheses is effectively securing the tubular graft at the treatment site. The released graft prosthesis may not sufficiently engage the vessel wall adjacent the treatment site, possibly resulting in the graft prosthesis moving after implantation, which may expose the damaged vessel wall. Plastically deformable expandable stent structures may be provided to attempt to more directly control the engagement between the graft prosthesis and the vessel wall. Such expandable structures, however, may require the use of a balloon or other expandable member to expand the stent structure to the enlarged condition, which may introduce risks of uneven stent structure expansion and/or balloon rupture.
In addition to plastically deformable stents, coiled-sheet stent structures have been suggested. Coiled-sheet stents may provide enhanced anchoring within the blood vessel because the size of the fully expanded stent may be more precisely controlled. A-coiled-sheet stent, however, may be substantially rigid transverse to its longitudinal axis, potentially resulting in a less flexible graft prosthesis, which may not be implanted effectively in tortuous anatomical conditions.
Therefore, there is a need for an improved stent-graft that may provide improved flexibility, while still providing substantial anchoring within a blood vessel.
SUMMARY OF THE INVENTION
The present invention is directed to a stent-graft having an exo-skeleton attached to a tubular graft. In accordance with one aspect of the present invention, a stent-graft is provided that includes a tubular graft having a peripheral wall defining a periphery and a lumen therein, the lumen extending axially between first and second ends of the tubular graft. An exo-skeleton is attached to the peripheral wall, the exo-skeleton including one or more serpentine elements, each serpentine element extending both peripherally, i.e., in a manner which generally surrounds the wall which may be circular, elliptical or other suitable configuration, and axially along at least a portion of the peripheral wall. A stent is provided on the first and/or second ends for substantially anchoring the ends within a body passage.
In a preferred form, each serpentine element is a zigzag structure extending peripherally about the peripheral wall of the tubular graft. More preferably, a plurality of serpentine elements are distributed axially along the peripheral wall for providing articulation of the tubular graft between adjacent serpentine elements. The serpentine elements may be individually attached to the peripheral wall and/or the serpentine elements may be connected to one another by one or more connector elements extending between adjacent serpentine elements.
In another preferred form, each serpentine element defines a generally sinusoidal shape extending axially along the peripheral wall. Preferably, a plurality of serpentine elements may distributed substantially evenly about the periphery of the peripheral wall. Each of these serpentine elements preferably includes substantially transverse peripheral elements, adjacent transverse peripheral elements being connected by alternating curved elements, thereby defining the generally sinusoidal shape.
The exo-skeleton of the stent-graft is preferably directable between a contracted condition for facilitating introduction within a body passage and an enlarged condition for deployment within the body passage. The exo-skeleton may substantially support the tubular graft to hold the lumen of the tubular graft substantially open in the enlarged condition. In a preferred form, the exo-skeleton is radially compressible to the contracted condition and biased to assume the enlarged condition. Alternatively, the contracted condition of the exo-skeleton may be achieved by flattening and circumferentially rolling the exo-skeleton.
The tubular graft may be provided from a polymeric material, such as polyester, polytetrafluorethaline, dacron, teflon, and polyurethane. The exo-skeleton may be attached to the tubular graft by sutures, staples, wires, or an adhesive, or alternatively by thermal bonding, chemical bonding, and ultrasonic bonding. The exo-skeleton may be formed from a metallic material, such as stainless steel or Nitinol, and may be a flat-coiled sheet with the one or more serpentine elements formed therein, or a wire formed into a serpentine shape.
In alternative forms, the first and second ends of the tubular graft may have similar cross-sections, or the first end of the tubular graft may have a cross-section that is substantially smaller than a cross-section of the second end of the tubular graft. In addition, the exo-skeleton may be attached to an exterior surface of the tubular graft, to an interior surface of the tubular graft, or embedded in the wall of the tubular graft.
In accordance with another aspect of the present invention, a stent-graft is provided for placement within a bifurcation that includes a first tubular graft segment having a first end and a second bifurcated end, the first tubular graft segment having a first peripheral wall. A second tubular graft segment extends from the second bifurcated end, the second tubular graft segment having a second peripheral wall. An exo-skeleton is attached to at least one of the first and second peripheral walls, the exo-skeleton including one or more serpentine elements, each serpentine element extending both peripherally and axially along at least a portion of the respective peripheral wall to which it is attached.
A coiled-sheet stent may be provided on the first end for substantially anchoring the first end within a body passage. Similarly, a coiled-sheet stent may be provided on the second tubular graft segment opposite the second end of the first tubular graft segment.
Preferably, the stent-graft also includes a third tubular graft segment attachable to the second bifurcated end, the third tubular graft segment having a third peripheral wall. The exo-skeleton also may include one or more serpentine elements attached to the third peripheral wall.
Thus, a stent-graft in accordance with the present invention may have a substantially flexible region that may conform substantially to the anatomy of a treatment site. Preferably, the flexible region is defined by an exo-skeleton attached to a tubular graft that includes one or more serpentine elements. The serpentine elements may facilitate articulation between adjacent serpentine elements, and/or may be sufficiently resilient and flexible to allow articulation, compression and/or expansion of the serpentine elements themselves.
Preferably, the stent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stretchable anti-buckling coiled-sheet stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stretchable anti-buckling coiled-sheet stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stretchable anti-buckling coiled-sheet stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540859

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.