Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Transmission control
Reexamination Certificate
1997-12-17
2001-03-06
Zanelli, Michael J. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Transmission control
C701S054000, C701S055000, C701S208000
Reexamination Certificate
active
06199001
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to a control device for a vehicle, which controls the behavior of the vehicle based on information regarding the route that the vehicle follows. This information is output by a route information detector.
2. Related Art
Generally a vehicle has a behavior control system, for example, an engine or a transmission. Control patterns applied to the behavior control system are either manually selected by the driver or automatically based on selected driving conditions detected by various sensors. But, both ways of selecting the control patterns are executed after encountering an actual vehicle condition change, hence behavior controls of the vehicle are delayed relative to actual road conditions, so it is possible to make the drivability of the vehicle worse.
Recently, it has become possible for a route information detection system, for example, a navigation system, to detect in advance information regarding the road conditions on which the vehicle travels, and this information is used to control the control patterns which are applied to the engine and automatic transmission in order to control the behavior of the vehicle as desired. An example of a vehicle control system is disclosed in Japanese Laid Open Publication No. HEI 8-72591.
In the above mentioned application, the vehicle control system for a vehicle has a location detection means, which detects the present location of the vehicle, a operating road predicting means, which predicts the future location of the vehicle in a few seconds later by referring to an electronic map, a running resistance measuring means, which measures the present load condition of driving systems of the vehicle, a driving force predicting means, which predicts the driving force at the predicted future location of the vehicle by correcting the present load condition on the basis of slope information from the electronic map, a driving system control unit, which controls in advance either the engine or the automatic transmission in order to get sufficient driving force of the predicted driving force to correspond and furthermore to reduce fuel consumption as much as possible, and a running locus recording means, which detects the information on the vehicle speed, and records and accumulates this information in the electronic map.
According to the above mentioned control system, by controlling the engine or the automatic transmission to get a predicted driving force, which corresponds to the condition of future location of the vehicle, and which is determined by the driving force predicting means, the vehicle is able to maintain the appropriate driving force for the road condition. Furthermore, it improves the drivability on an actual road condition by reflecting the driver's intention to the control of the driving force.
In the above mentioned control system of the vehicle, because the route information is detected on the basis of radio waves from man-made satellites and the signals from various sensors, if the vehicle operates in places where the radio waves barely reach or the sensors fail, it is possible not to detect the correct route. As a result, the problem arises that the driving force of the vehicle is inappropriate to the road condition and the drivability deteriorates.
One of the examples, which deals with this problem, is an invention disclosed in Japanese Patent Laid Open Publication No. 5-262251. A control system for a vehicle has a running information output means, which outputs the information about the location of the vehicle, a moving condition control means, which controls the condition of the vehicle on the basis of the output of the running information, and a control rule changing means, which changes the rule on the basis of whether the running information output means is normal or not. So, even if the running information output means has failed, the control for the vehicle controls the vehicle without deteriorating the accuracy of the driving performance.
Although, it is possible that the outputted information includes an error within a certain degree, even if the running information output means, which outputs the information, is operating normally. Under this circumstance, if the predetermined moving condition control, which is appropriate to the fail condition of the information output means, is executed, the moving condition of the vehicle does not adapt to the road condition. As a result, it is possible that the drivability deteriorates.
But in the control system for the vehicle, disclosed in the HEI 5-262251, the control rules for the moving condition control means are automatically changed on the basis of whether the information, which is normal or fail. So, if the information output means deteriorates and consequently, the accuracy of the information is bad, and as the moving condition control is executed based on either the normal rule or the failure rule, it is difficult to meet the actual situation.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a control system for a vehicle that is able to control the behavior of the vehicle precisely based on the accuracy of detected route information.
A control system built according to the present invention is described in the following. The control system defines the accuracy of information detected by the navigation system, and changes the control patterns which are applied to the behavior control system corresponding to the detected accuracy of the route information. At least one of the following defines the accuracy of detected of the route information; the location of the vehicles position, detected by a first data detecting unit and a second data detecting unit of a navigation system, and map data stored in the data recording medium of the navigation system, are compared with each other to determine the accuracy of the route information; the location the present vehicle position by the first data detecting unit and the second data detecting unit or the map data stored in the data recording medium, are compared with each other to determine the accuracy of the route information detected by the second data detecting unit or the map data stored in the recording medium; the place where the vehicle is operating determines the accuracy of the route information detected by the second data detecting unit by itself; the map data stored in the recording medium determines the accuracy of the route information detected by the first data detecting unit and the second data detecting unit; or the map matching condition detects the accuracy of the route information.
At least one of the following changes the control patterns which are applied to the control of the behavior control system corresponding to the accuracy of the route information; according to the accuracy of corner information, the automatic transmission is down shifted; according to the accuracy of down slope information, the automatic transmission is prohibited from shifting up; according to the accuracy of climbing road information, the automatic transmission changes its shift pattern of the shift diagram to the power pattern; according to the accuracy of down slope information, the brake system is controlled by its oil pressure; according to the accuracy of congestion information, the vehicle auto drive control is canceled or initiated; according to the accuracy of the surface condition of the road, the damping force of the suspension is changed; according to the accuracy of the surface condition of the road, the power assist of the steering wheel is changed; according to the accuracy of congestion, the engine is controlled to decrease its fuel consumption.
According to invention, the control patterns which are applied to the control of the behavior control system, which include, the engine control, the transmission control, and the suspension control, the brake control, the steering control, the vehicle auto drive control, are changed corresponding to the accuracy of the route information, which is detected by an
Fukumura Kagenori
Iwatsuki Kunihiro
Ohta Takashi
Kenyon & Kenyon
Toyota Jidosha & Kabushiki Kaisha
Zanelli Michael J.
LandOfFree
Control system for controlling the behavior of a vehicle... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Control system for controlling the behavior of a vehicle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control system for controlling the behavior of a vehicle... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2540847