Roll-forming machine with adjustable compression

Metal deforming – By deflecting successively-presented portions of work during... – By use of deflector arranged to bend work transversely of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C072S246000

Reexamination Certificate

active

06209374

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a roll-forming machine having adjustable compression between forming rolls of the forming roll stations.
Roll-forming machines typically include a plurality of roll-forming stations that are used to transform a planar sheet of metal into a component having either a C-shaped or Z-shaped cross-sectional area, for example. The component, such as a C-purlin or Z-purlin, typically has a center portion, a pair of leg portions joined to the center portion by a substantially right angle bend formed by the roll-forming machine, and a flange joined to each leg portion by a respective bend formed by the machine.
Typically, the flanges of a C- or Z-shaped component are made first by a plurality, such as three, roll-forming stations. The first of these stations makes an initial pair of bends at the desired transverse locations on the sheet, and then the successive stations for forming the flanges increase the previously made bends until the flanges are at the proper angle relative to the center portion of the sheet. The legs of the component are then formed by a plurality of roll-forming stations in a similar manner.
Each of the roll-forming stations typically includes a pair of frame members in which a pair of rotatable arbors are journalled, one arbor disposed directly above the other, and a pair of sleeves which cover a portion of the arbors, the sleeves being slidable over the arbors. Each roll-forming station includes at least two pairs forming rolls, two of the forming rolls being fixed to the arbors and the other two forming rolls being fixed to the sleeves. The circumferential ends of the upper and lower forming rolls are vertically spaced apart by a distance corresponding to the thickness of the sheet of material being bent, and the shape or contour of the forming rolls controls the degree to which the sheet is bent. The use of sleeves which are slidable on the arbors and which rotate with the arbors allows the horizontal spacing of the forming rolls on each arbor and sleeve to be varied so that the transverse widths of the center portion and the leg portions of the components being formed can be adjusted.
The sheet of material is forced through the roll-forming machine by friction between the sheet and the rotating forming rolls. The forming rolls of a plurality of the roll-forming stations, e.g. the forming rolls of every other station, are rotatably driven to ensure that there is enough driving power to force the sheet through the machine.
In the case of a C-shaped component, the flanges are made by bending the transverse ends of the sheet in the same direction, for example, downwards, whereas for a Z-shaped component the flanges are made by bending the transverse sheet ends in opposite directions. After the flanges are formed on the transverse ends of the sheet, the legs are formed by a plurality of roll-forming stations by a similar process. To form a component in the above manner, up to ten or more roll-forming stations may be incorporated in the roll-forming machine.
SUMMARY OF THE INVENTION
In one aspect, the invention is directed to a roll-forming machine having a base structure, a plurality of first roll-forming stations associated with the base structure that form a first component having a Z-shaped cross section and a plurality of second roll-forming stations associated with the base structure that form a second component having a C-shaped cross section.
At least one of the roll-forming stations is provided with a first rotatable arbor adapted to support a first pair of forming rolls, a second rotatable arbor adapted to support a second pair of forming rolls, a first support structure, a first bearing assembly associated with the first support structure that rotatably supports a first portion of the first arbor, a second bearing assembly associated with the first support structure that rotatably supports a first portion of the second arbor, a second support structure, a third bearing assembly associated with the second support structure that rotatably supports a second portion of the first arbor, and a fourth bearing assembly associated with the second support structure that rotatably supports a second portion of the second arbor.
The roll-forming station also includes a first adjustment mechanism that allows the position of the first bearing assembly to be adjusted relative to the position of the second bearing assembly, a second adjustment mechanism that allows the position of the third bearing assembly to be adjusted relative to the position of the fourth bearing assembly, a first compression assembly that exerts a force upon the first bearing assembly when the first bearing assembly is moved away from the second bearing assembly, and a second compression assembly that exerts a force upon the third bearing assembly when the third bearing assembly is moved away from the fourth bearing assembly.
Each of the support structures may comprise a vertically disposed support plate and a slot formed in the support plate, and at least one of the bearing assemblies supported by each support plate may be movable along a vertical direction within the slot. The adjustment mechanisms may be provided in the form of adjustment screws. The compression assemblies may each comprise at least one spring, which may be in the form of a cone-shaped spring member, and a structure that holds the spring in a predetermined position. Each of the compression assemblies may have a non-linear force/displacement curve associated therewith.
In another aspect, the invention is directed to a roll-forming station having a first rotatable arbor capable of supporting a first pair of forming rolls, a second rotatable arbor capable of supporting a second pair of forming rolls, a first support structure, a first bearing assembly associated with the first support structure that rotatably supports a first portion of the first arbor, a second bearing assembly associated with the first support structure that rotatably supports a first portion of the second arbor, a second support structure, a third bearing assembly associated with the second support structure that rotatably supports a second portion of the first arbor, and a fourth bearing assembly associated with the second support structure that rotatably supports a second portion of the second arbor. The first and second support structures support the bearing assemblies so that the first and second arbors are movable relative to each other exclusively in a vertical direction so that the first and second arbors are always aligned in a common vertical plane.
The roll-forming station also includes a first adjustment mechanism that allows the position of the first bearing assembly to be adjusted exclusively in a vertical direction relative to the position of the second bearing assembly, a second adjustment mechanism that allows the position of the third bearing assembly to be adjusted exclusively in a vertical direction relative to the position of the fourth bearing assembly, a first compression assembly that exerts a force upon the first bearing assembly when the first bearing assembly is moved away from the second bearing assembly in a vertical direction within the common vertical plane, and a second compression assembly that exerts a force upon the third bearing assembly when the third bearing assembly is moved away from the fourth bearing assembly in a vertical direction within the common vertical plane.
In a further aspect of the invention, the first and second adjustment mechanisms may be adjusted to support each of the first and third bearing assemblies in an initial position so that there is a predetermined initial gap between the forming rolls supported by the first arbor and the forming rolls supported by the second arbor when the first and third bearing assemblies are disposed in the initial positions. Each of the compression assemblies may be disposed in a pre-loaded condition so that each has a discontinuous force/displacement curve in order to cause each compression assembly to exert no fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Roll-forming machine with adjustable compression does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Roll-forming machine with adjustable compression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Roll-forming machine with adjustable compression will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540506

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.