Internal-combustion engines – Charge forming device – Crankcase vapor used with combustible mixture
Reexamination Certificate
2001-01-11
2001-08-28
McMahon, Marguerite (Department: 3747)
Internal-combustion engines
Charge forming device
Crankcase vapor used with combustible mixture
C123S573000
Reexamination Certificate
active
06279556
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an oil separator for de-oiling crankcase ventilation gases of an internal combustion engine with the oil separator comprising a cyclone encompassing a gas inlet connected to the crankcase of the internal combustion engine, a gas outlet connected to the suction passage of the internal combustion engine, and an oil outlet connected to a crankcase sump of the internal combustion engine.
An oil separator of the kind mentioned above is known from DE 42 14 324 C2. In this oil separator a single cyclone is used which is dimensioned such that it may cope with the maximal amount of ventilation gases. An essential feature of this known oil separator is that a downward duct is connected to the oil outlet of the cyclone with the mouth thereof arranged below the oil level of the crankcase sump of the associated internal combustion engine, that a float valve which is normally open and arranged in a lower casing section at the side of the cyclone prevents a backwards flow out of the crankcase sump of the internal combustion engine, and that the complete oil separator as a construction unit is detachably connected to the downward pipe. These specific features of the oil separator have to take care that when the operating conditions of the associated internal combustion engine will certainly and strongly change, e.g., when full speed is achieved following an idle run, no oil from the crankcase sump of the internal combustion engine is transported into the interior of the cyclone because extremely large pressure differences will result from the change of the operating conditions.
The problem mentioned which is dealt with in the above document is solved by the oil separator described therein, however, this oil separator with the single cyclone has the disadvantage that no optimal oil separation is attained across the total range of operating conditions of the internal combustion engine which occur in practical operation. The occurring different operating conditions of the internal combustion engine on the one hand lead to different flow rates of ventilation gases out of the crankcase, and on the other hand to a different oil load of these ventilation gases. As a cyclone will operate only in a definite relative small range of operation conditions of the internal combustion engine, non-required oil volumes will occur in the gases out of the cyclone and fed to the suction air of the internal combustion engines during operation conditions outside of this optimal operating range.
Therefore it is the object of the present invention to provide a generic oil separator avoiding the mentioned disadvantages and ensuring an optimal, i.e., complete or almost complete separation of oil from the crankcase ventilation gases in particular across a very large range of practical operation conditions of the internal combustion engine.
SUMMARY OF THE INVENTION
The object is attained by a generic oil separator which is characterized in that instead of a single cyclone, several smaller cyclones are provided arranged in parallel with each other.
In comparison with an oil separator with a single cyclone, a considerably larger optimal working range of the oil separator is attained with the oil separator according to the invention. In particular the oil separator has a significantly better oil separation in small flow rates of the crankcase ventilation gases, and a smaller sensitivity to variation of this flow rate. In this way, with the oil separator according to the invention, a significantly reduced dependence of the separation rate will result, and therefore of the efficiency on the current operating conditions of the associated internal combustion engine is attained which reduces the oil load of the suction air of the internal combustion engine, which will reduce the oil loss of the internal combustion engine through the crankcase ventilation.
Preferably it is provided that the cyclones are designed with a tangential flow against them. This tangential flow enables in particular a very compact construction which in comparison with an axial flow will keep the construction height of the cyclones low.
A further embodiment of the invention provides that the bodies of the single cyclones comprise middle axes in parallel with each other and are combined to form a cyclone body member. As each cyclone has only to cope with a fraction of the crankcase ventilation gases which corresponds to the number of the cyclones, each cyclone may be designed with a smaller diameter which makes it smaller in total, and even more important, with a reduced height. Thereby the total dimension of the oil separator is advantageously compact, wherein in comparison with a known oil separator, the diameter is slightly larger, however, the height is considerably smaller. This offers an essential relief when accommodating the oil separator in an engine compartment, i.e., of a motor car where frequently jammed conditions occur.
Furthermore it is provided that the feeding passages leading to the corresponding gas inlets of the individual cyclones are formed of a single main feeding passage which is split or divided. Hereby advantageously it is attained that only a single connection line has to be designed from the crankcase to the oil separator in order to guide the crankcase ventilation gases to the oil separator. Only in the separator the gas flow of the ventilation gases is divided into partial flows for the individual cyclones. This simplifies the mounting of the oil separator and keeps the number of connection lines low although several cyclones are in use.
In order to attain a low-cost manufacturing of the oil separator, the main feeding passage and the individual feeding passages are combined to form a feeding passage member.
A further step for reducing the single parts of the oil separator is in that the cyclone body member and the feeding passages member are combined to form a main member.
As mentioned above, the individual cyclones of the oil separator may be designed as a bundle in a compact construction member. As an alternative the design of the oil separator of several individual cyclones offers the advantageous possibility that the individual cyclones may be arranged in and/or at the internal combustion engine in a decentralized manner. In this way there is the possibility to arrange the single cyclones separated from each other at those spots in or at the internal combustion engine where there is space present for a single cyclone. In this way, frequently non-used spaces which have not been used before may be used for one cyclone which as such is relatively small.
As a supplement, the single cyclones may be at least partially be integrated in one or more other components of the internal combustion engine. By this method the effort for manufacturing and mounting the single components of the oil separator and/or the feeding and exhaust lines thereof may be reduced. Additionally, the space for mounting the single components of the oil separator and the feeding and exhaust lines may further be reduced.
The components of the internal combustion engine, namely the cylinder head hood or the air filter housing, are particularly suitable for the integration of the individual cyclones and/or the associated feeding and exhaust lines or parts thereof. The quoted components on the one hand offer free space or space which has not been previously used, in which the cyclones and other parts of the oil separator may be arranged without requiring further space. In addition, these components as such are arranged adjacent to or in the flow path which the crankcase ventilation gases and the oil separated therefrom and the clean gas have to pass.
In order to manufacture the oil separator in a low cost and labor saving fashion, the components thereof are preferably die casting parts of light metal and/or injection molding parts of plastic material.
REFERENCES:
patent: 5239972 (1993-08-01), Takeyama et al.
patent: 5460147 (1995-10-01), Bohl
patent: 5944001 (1999-08-01), Hutchins
patent: 6089213 (2
Busen Jürgen
Pietschner Sieghard
McMahon Marguerite
Sonnenschein Nath & Rosenthal
Walter Hengst GmbH & Co. KG
LandOfFree
Oil separator for removing oil from the crankcase... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Oil separator for removing oil from the crankcase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oil separator for removing oil from the crankcase... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2538055