Preparation of substituted hydroxyhydrocinnamate esters by...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S067000

Reexamination Certificate

active

06291703

ABSTRACT:

This invention pertains to a novel process for making substituted higher aliphatic esters of hydrohydroxycinna ic acids by transesterification of the corresponding lower alkyl ester and higher alkanol using a continuous distillation column reactor having a reaction zone containing a solid, heterogeneous transestenification catalyst.
BACKGROUND OF THE INVENTION
The aliphatic esters and polyesters of substituted sterically hindered hydroxyhydrocinnamic acid are well-known as effective antioxidants for a wide variety of organic materials, protecting them from oxidative and thermal degradation. Many of these esters have gained wide spread commercial acceptance as phenolic antioxidants.
Batchwise transesterification methods for obtaining the instant ester compounds are known in the art. For example, methods of obtaining the octadecyl ester of dialkyl hydroxyphenylpropionic acid by ester exchange reaction of the methyl ester of dialkyl hydroxyphenylpropionic acid with octadecyl alcohol in the presence of an alkaline catalyst and the like, are known methods for obtaining higher alkyl esters of 3,5-dialkyl-4-hydroxyphenylpropionic acid by ester exchange reaction between alkyl esters of 3,5-dialkyl-4-hydroxyphenylpropionic acid and alkanols having higher alkyl groups. See, for example, U.S. Pat. Nos. 4,594,444 and 5,206,414. Japanese 57-136,548A teaches an analogous process, but utilizing aromatic sulfonic acids and cationic exchange resins as suitable transesterification catalysts. As noted hereinabove, these known methods involve batchwise-type chemistry, and are therefore readily distinguished from the instant continuous transesterification process for the production of substituted higher aliphatic esters of hydrohydroxycinnamic acids.
Japanese 02-180,851 and 02-180,852 teach a process for the production of B-(3,5-dialkyl-4-hydroxy-5-methylphenyl) propionate by reaction of 2,6-dialkyiphenol with an alkyl acrylate whereby the latter is continuously supplied in an amount of less then 1.0 mole per mole of 2,6-dialkylphenol in the presence of an alkali or alkaline earth 2,6-dialkylphenoxide as catalyst. No mention is made, however, for the continuous removal of the reaction products or of steady-state operation wherein reaction conditions are constant over time.
Reactive distillation methods are known in the art. For example, U.S. Pat. No. 5,536,856 relates specifically to the esterificafion of a carboxylic acid to form the carboxylic acid ester using a reactive column reactor having thereon an ion exchange resin containing sulfonic and/or carboxylic acid groups. U.S. Pat. No. 5,426,206 teaches the use of reactive distillation for the transesterification of a dialkyl carbonate with an aromatic hydroxy compound, such as phenol, in three successive reaction zones, each containing a catalyst such as a titanate ester, to form a diarylcarbonate. Also, the use of reactive distillation for hydrogenation of alkyl fatty acid esters to make the corresponding alkanol is known. However, there is no such method nor analogous method known by which to make the instant hindered phenolic ester compounds.
Indeed, one skilled in the art of antioxidants would not expect continuous transesterification by way of reactive distillation to lead successfully to the instant specialty chemical stabilizer compounds, where ultimate product stability is compromised if antioxidant quality is not high. “Batchwise” methods for preparing the instant compounds, which easily allow for stop-and-start sampling check points, have been historically preferred by industry. Batchwise operation conveniently provides for delays until analytical results become available, and thus allows for consistent and dependable product quality. In contrast, continuous reactive distillation is most often associated with commodity chemicals having lower product specification requirements. The most prevalent example is the manufacture of low molecular weight ethers, which are used as gasoline additives, where high product purity is not a stringent necessity.
BRIEF SUMMARY OF THE INVENTION
Surprisingly, it has now been found that the instant continuous transesterification process using a reactive distillation column reactor results in high product throughout and product quality of substituted higher aliphatic esters of hydroxyhydrocinnamic acids in the ester exchange reaction between the corresponding lower alkyl ester and the higher alkanol. As will become evident from the more detailed description below, the instant process departs from typical reactive distillation techniques in several important aspects, namely by requiring a low pressure difference across the distillation column, by requiring a higher energy input due to the endothermic nature of the system, by requiring a special packing for housing the solid, heterogeneous catalyst, and by requiring a catalyst of a special type.
As compared to known batchwise processes for preparing the instant compounds, the insant continuous transesterification process has several important advantages. Notably, it eliminates the presence of any residual metal catalyst, which interferes with ultimate product stability; reduces unwanted waster and/or byproducts; significantly reduces residence time; and provides consistent product quality since batch-to-batch variation is virtually eliminated.


REFERENCES:
patent: 4594444 (1986-06-01), Orban
patent: 5144058 (1992-09-01), Nishimura
patent: 5206414 (1993-04-01), Evans et al.
patent: 5426206 (1995-06-01), Jung et al.
patent: 5518699 (1996-05-01), Kashnitz et al.
patent: 5523214 (1996-06-01), Horn
patent: 5536856 (1996-07-01), Harrison et al.
patent: 5563291 (1996-10-01), Kleiner
patent: 57136548 (1982-08-01), None
patent: 2180852 (1990-07-01), None
patent: 2180851 (1990-07-01), None
Ullmann's Encyclopedia of Industrial Chemistry, 5thEdition, vol. B4, Verlagsgesellschaft, Weinheim, Germany, 1992, pp 88-89, 93-94, 171-172.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of substituted hydroxyhydrocinnamate esters by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of substituted hydroxyhydrocinnamate esters by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of substituted hydroxyhydrocinnamate esters by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537365

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.